Category Archives: Flavor

Botany Lab of the Month, Presidential Inauguration Edition: Saffron

If you like your spices gold-colored and expensive, find some fresh Crocus sativus flowers and grab ‘em by the…disproportionately large female reproductive organ. Small hands might work best, though it might turn your skin orange. Saffron is probably from the Middle East. If that bothers you, you may want to ban it from your spice shelves, however ill that bodes for the quality of your cabinet. After all, there is a stigma against that sort of thing.

The most expensive oversized reproductive organ in the world

safran-weinviertel_niederreiter_2_gramm_8285

A pile of dried saffron stigmas (“threads”). Photo from Wikipedia

You may know that saffron is the most expensive spice in the world. A Spanish farmer sold his crop of high quality saffron this year for four euros per gram, which is a ninth of today’s price of gold (36 euros per gram). Saffron is expensive because its production requires a huge amount of labor and land. Saffron production is labor- and land-intensive because saffron is a botanically unique food item that defies mechanical harvest and accounts for a miniscule proportion of the plant that bears it. The saffron threads sold as spice are the dried stigmas of the flowers of the saffron crocus (Crocus sativus, family Iridaceae). Recall that the stigma is the part of the flower’s female reproductive organs that catches pollen. Pollen travels from the stigma through the style into the flower’s ovary (collectively, the stigma, style, and ovary comprise the pistil). Continue reading

Buddha’s hand citrons and a wish for peace on earth in 2017

Winter is the season for citrus fruit, and January is the month for breaking out of old routines, so stop staring at your navel and learn about one of the weirder citrus varieties.

I’ll never forget the day one of my general botany students brought to class a Buddha’s hand citron, pulled from a tree right outside our classroom. I had only recently moved to northern California from Indiana, and I’d never seen anything like it: it was a monstrous mass of a dozen pointed twisted fingers splayed irregularly from a stout base. It had the firm heft and girth of a grapefruit and the unmistakable pebbled skin of a citrus fruit, so I wondered whether my student had found a grossly deformed grapefruit; but the oil in the peel smelled heavenly and not at all like a grapefruit. In class we cut through a big finger and found no juicy segments, just white citrus pith all the way through.

Immature Buddha's hand on the tree

Immature Buddha’s hand on the tree

We eventually discovered that this fascinating fruit was a Buddha’s hand citron, Citrus medica variety sarcodactylis, meaning fleshy (sarco-) fingered (-dactyl) citron. Since that day many years ago I’ve become an unapologetic (if surreptitious) collector of the fruits from that same campus tree. The citrons do not drop from the tree on their own, yet I often find one or two lying nearby, probably torn off by a curious tourist or student and then abandoned. Obviously these fruits need a good home, and where better than the window sill in my office?

The first time I left one closed up in my office over a weekend, I opened the door on Monday morning to a waft of fruity floral aroma. It turns out that many people in China and India use the fruit to scent the air, although in west Asia and Europe the fleshy fingers are more often candied or used to flavor alcohol. I do both: the fruits make my office smell nice until they are fully yellow, and then I cook them.

It can be difficult or expensive to get your own hands on a fingered citron, but it’s easy to find a navel orange almost any time of the year. Fortunately, the patterns underlying the morphology of the fingered fruit can also be seen in an everyday navel orange. Between our photos of Buddha’s hands and your own navel orange, you should be able to follow along at home. Continue reading

Winter mint

This is our second of our two contributions to Advent Botany 2015. All the essays are great!

An early image of candy canes. From Wikipedia

An early image of candy canes. From Wikipedia

The candy cane, that red- and white-striped hard candy imbued with peppermint oil, is a signature confection of the winter holidays. Peppermint has a long history of cultivation and both medicinal and culinary use. Infusions of the plant or its extract have been used for so many hundreds of years throughout Europe, North Africa and Western Asia that the early history of peppermint candies, including cane-shaped ones, is murky. Fortunately, the biology behind peppermint’s famous aroma is better known than the story of how it came to be a Christmas staple. Continue reading

Sugar

This is our first of two contributions to Advent Botany 2015.

Sugar plums dance, sugar cookies disappear from Santa’s plate, and candied fruit cake gets passed around and around. Crystals of sugar twinkle in the Christmas lights, like scintillas of sunshine on the darkest day of the year. Katherine and Jeanne explore the many plant sources of sugar.

Even at a chemical level, there is something magical and awe-inspiring about sugar. Plants – those silent, gentle creatures – have the power to harness air and water and the fleeting light energy of a giant fireball 93 million miles away to forge sugar, among the most versatile compounds on earth, and a fuel used by essentially all living organisms.

Sugar naturally occurs in various chemical forms, all arising from fundamental 3-carbon components made inside the cells of green photosynthetic tissue. In plant cells, these components are exported from the chloroplasts into the cytoplasm, where they are exposed to a series of enzymes that remodel them into versions of glucose and fructose (both 6-carbon monosaccharides). One molecule of glucose and one of fructose are then joined to form sucrose (a 12-carbon disaccharide). See figure 1.

Sugars: glu, fru, and sucrose

Figure 1.

Sucrose is what we generally use as table sugar, and it is the form of sugar that a plant loads into its veins and transports throughout its body to be stored or used by growing tissues. When the sucrose reaches other organs, it may be broken back down into glucose and fructose, converted to other sugars, or combined into larger storage or structural molecules, depending on its use in that particular plant part and species. Since we extract sugar from various parts and species, the kind of sugar we harvest from a plant, and how much processing is required, obviously reflects the plant’s own use of the sugar. Continue reading

The new apples: an explosion of crisp pink honey sweet snow white candy crunch

What’s in a name?  An apple with an old fashioned name could taste as sweet, but it might not sell.  The most sought after branded varieties reveal what people look for in an apple: sweet and crunchy and bright white inside.  Do the fruits live up to their names?  Are Honeycrisp apples crunchier than others?  Do Arctics actually stay white?  We zoom in on the cells to find out.

Some of you will remember the era when the Superbowl halftime show repeatedly featured Up With People.  That was around the time when Granny Smiths arrived in our supermarkets and finally gave Americans a third apple, a tart and crunchy alternative to red and golden delicious.  Those were simple days.  Continue reading

Taking advantage of convergent terpene evolution in the kitchen

The Cooks Illustrated recipe masters recently added nutmeg and orange zest to a pepper-crusted steak to replace two flavorful terpenes, pinene and limonene, lost from black pepper when simmered in oil. In doing so they take advantage of convergent evolution of terpenoids, the most diverse group of chemical products produced by plants. Nutmeg and orange zest, though, were hardly their only options.

The terpene swap

Black pepper (Piper nigrum) growing in Cambodia (photo by L. Osnas)

Black pepper growing (photo by L. Osnas)

To develop satisfying crunch, the Cooks Illustrated recipe for pepper-crusted beef tenderloin requires a prodigious quantity of coarsely ground black pepper (Piper nigrum; family Piperaceae). If applied to the meat raw, however, in the recipe authors’ view, this heap of pepper generates an unwelcome amount of spicy heat. To mellow it, the recipe authors recommend simmering the pepper in oil and straining it out of the oil before adding it to the dry rub. The hot oil draws out the alkaloid piperine, which makes black pepper taste hot, from the cracked black pepper fruits (peppercorns).

Nutmeg seed showing brown seed coat folded within the ruminate endosperm

Nutmeg seed

To their dismay, however, the recipe authors discovered that the hot oil also removes flavorful compounds from the cracked pepper, in particular the terpenes pinene and limonene. To rectify this flavor problem, the recipe authors added pinene-rich nutmeg (Myristica fragrans; Myristicaceae) and limonene-rich orange (Citrus x sinensis; Rutaceae) zest to the dry rub, along with the simmered black pepper. In doing so they take advantage of widespread and diverse array of terpenoids in the plant kingdom. Continue reading

Origin stories: spices from the lowest branches of the tree

Why do so many rich tropical spices come from a few basal branches of the plant evolutionary tree?  Katherine looks to their ancestral roots and finds a cake recipe for the mesozoic diet.

I think it was the Basal Angiosperm Cake that established our friendship a decade ago.  Jeanne was the only student in my plant taxonomy class to appreciate the phylogeny-based cake I had made to mark the birthday of my co-teacher and colleague, Will Cornwell.  Although I am genuinely fond of Will, I confess to using his birthday as an excuse to play around with ingredients derived from the lowermost branches of the flowering plant evolutionary tree. The recipe wasn’t even pure, since I abandoned the phylogenetically apt avocado for a crowd-pleasing evolutionary new-comer, chocolate.  It also included flour and sugar, both monocots.  As flawed as it was, the cake episode showed that Jeanne and I share some unusual intellectual character states – synapomorphies of the brain – and it launched our botanical collaborations.

Branches at the base of the angiosperm tree
The basal angiosperms (broadly construed) are the groups that diverged from the rest of the flowering plants (angiosperms) relatively early in their evolution.  They give us the highly aromatic spices that inspired my cake – star anise, black pepper, bay leaf, cinnamon, and nutmeg.  They also include water lilies and some familiar tree species – magnolias, tulip tree (Liriodendron), bay laurels, avocado, pawpaw (Asimina), and sassafras. Continue reading

Nasturtiums and the birds and the bees

Hummingbirds and ancient bees are responsible for the color and shape of nasturtium blossoms and have a unique view of them, explains Jeanne over salad. 

Nasturtium flowers cut into tomato salad with parsley

Nasturtium flowers cut into tomato salad with parsley

Fall frost hasn’t yet claimed our nasturtiums (Tropaeolum majus; Tropaeolaceae family). The large, colorful blooms amidst the round leaves are still spilling over planting boxes.  All parts of the plant are edible and boast spicy mustard oil glucosinolates, betraying the plant’s membership in the order Brassicales, along with the cruciferous vegetables and mustard in the Brassicaceae family, capers (Capparaceae), and papaya (Caricaceae; try the seeds, as suggested here). I’ve heard that the immature flower buds and immature seed pods can be pickled like capers, but I haven’t tried it yet. Mostly I use the flowers, throwing a few in a salad or chopping them coarsely with other herbs and stirring them into strained yogurt or butter to put on top of roasted vegetables or lentils. In addition to the mustardy kick, the sweet flower nectar adds to these dishes. Continue reading

Okra – what’s not to like?

What is hairy, green, full of slime, and delicious covered in chocolate? It has to be okra, bhindi, gumbo, Abelmoschus esculentus, the edible parent of musk. Katherine explores okra structure, its kinship with chocolate, and especially its slippery nature. What’s not to like?

Okra flower with red fruit below

Okra flower with red fruit below

People often ask me about okra slime. Rarely do they ask for a good chocolate and okra recipe, which I will share unbidden. With or without the chocolate, though, okra is a tasty vegetable. The fruits can be fried, pickled, roasted, sautéed, and stewed. Young leaves are also edible, although I have never tried them and have no recipes. Okra fruits are low in calories and glycemic index and high in vitamin C, fiber, and minerals. The plant grows vigorously and quickly in hot climates, producing large and lovely cream colored flowers with red centers and imbricate petals. The bright green or rich burgundy young fruits are covered in soft hairs. When they are sliced raw, they look like intricate lace doilies. In stews, the slices look coarser, like wagon wheels. And yes, okra is slimy. And it is in the mallow family (Malvaceae), along with cotton, hibiscus, durian fruit, and chocolate. Continue reading

Evolution of Lemon Flavor

A batch of lemon balm-lemon verbena syrup reminds Jeanne of the multiple evolutionary origins of lemon flavor.

DSC00796The citrus lemon itself is only one of many plant species that lends its namesake flavor or fragrance to our food and drinks.  Lemon flavor primarily comes from a few terpenoid essential oils:  citral (also called geranial, neral, or lemonal), linalool, limonene, geraniol, and citronellal.  The production of one or more of these essential oils has independently evolved multiple times in species on widely separated branches of the plant phylogeny (see figure).

Phylogeny of plant orders with edibles (click the tree to enlarge). Orders with species with lemony essential oils are highlighted in red.  For a refresher on reading phylogenies, please see our food plant tree of life page.

Phylogeny of plant taxonomic orders with edibles (click the tree to enlarge). Orders with species with lemony essential oils are highlighted in red. For a refresher on reading this phylogeny, please see our food plant tree of life page.

Continue reading