Tag Archives: kale

Botany lab of the month: Contrasting brassica plants in the garden

This is just a quick post about some instructive cruciferous vegetable (family Brassicaceae) anatomy and within-species diversity apparent in my garden at the moment.

Red Russian kale, rutabagas, and canola oil are all different varieties of Brassica napus. Red Russian kale and rutabagas are in my garden now, and the amplification of leaves and roots, respectively, through domestication is evident.

Red Russian kale (Brassica napus)

The rutabaga leaves are large, lobed, and somewhat grayish, like the Russian kale, but they are tougher and not as numerous as on the kale.

rutabaga plant (Brassica napus; Brassicaceae)

You’ll just have to take my word for it that there is no giant rutabaga-like root (technically a swollen hypocotyl, the fused lower stem and taproot, like a turnip, radish, or maca) straining the soil surface on the kale plant.

rutabaga

Anatomical differences amplified through domestication on otherwise vaguely similar-looking cruciferous vegetable plants is also visible on Brussels sprouts and collard greens, two different varieties of Brassica oleracea. A farmer or gardener familiar with the gestalt of the plants will easily identify a Brussels sprouts plant from afar as distinct from a collard greens plant, although the large plant and leaf size are similar.

Brussels sprouts plant (Brassica oleracea)

collard greens plant (Brassica oleracea)

Up close, though, you’ll see that the larger, more tender collard greens leaves have only a very tiny bud in their leaf axils (where the leaf joins with the stem).

Giant collard green leaves subtend very tiny axillary buds.

The developing Brussels sprouts, though, are not nearly done growing and are already much larger than the axillary buds  in any other variety of B. oleracea.

Young Brussels sprouts are really just giant axillary buds developing on the stalk.

While red Russian kale is Brassica napus, most of all the other kales are leafy varieties of Brassica oleracea, along with collard greens, Brussels sprouts, cabbage (which is the enlarged terminal bud, similar to the axillary bud), kohlrabi, broccoli, and cauliflower (read about this diversity and more about the anatomy involved in our essay The extraordinary diversity of Brassica oleracea). Last year we let one of the B. oleracea kales, a curly green winterbor variety, overwinter. Many of these brassicas retain the biennial life cylce of their weedy Mediterranean ancestor (read about it in our essay Caterpillars on my crucifers: friends or foes?), so overwintering is something for which a kale plant can prepare itself. The term biennial means that the plant’s life cycle requires two years to complete. In the first year the plant produces a profusion of leaves (the “rosette”). In the second year the plant flowers, sets seed, and dies. The leaves from the first year die over the winter. It is the job of those axillary buds to survive the winter as tightly wrapped bundles of overlapping leaves that will be familiar to Brussels sprouts fans. In the spring those leaves in the axillary buds unfurl and grow as the tiny stem that supports them elongates. This unfurling of leaves from otherwise small axillary buds was apparent this spring in our overwintering kale.

This winterbor kale stem overwintered. Above each leaf scar (from last year) new leaves are expanding on a new lateral stem from the axillary buds.

If you’d like to read even more about cruciferous vegetables in the mustard family (Brassicaceae), we have a few other longer essays that fill in some of this back story:

Thanksgiving turnips and the diversity of the genus Brassica

The most political vegetables: a whirlwind tour of the edible crucifersGreens: why we eat the leaves we do

Maca: A Valentine’s Day call for comparative biology

Greens: why we eat the leaves that we do

Jeanne reveals which branches of the evolutionary tree of plants bear edible leaves and speculates about why that is.

Giant coconut palm (Cocos nucifera) fronds dwarf me

Giant coconut palm (Cocos nucifera) fronds dwarf me

Most of the 300,000 + plant species have leaves, and the function of all of them is to perform photosynthesis.  They are the ultimate source for all of the oxygen and food for the rest of the food chain and help regulate the global carbon and water cycles.  They are also nutrition superstars.  To figure out why greens are good for you and whether all leaves are equal in this regard, we need to take quick look at global leaf structural variability and broad evolutionary patterns in the species that make their way onto our tables. Continue reading

The extraordinary diversity of Brassica oleracea

Before the caterpillars attacked: Red Russian kale seedlings

Jeanne turns her frustration with caterpillars in her garden into an exploration of the botany behind an extraordinary species:  Brassica oleracea.

White cabbage butterflies (Lepidoptera: Pieris rapae) decimated the fall kale crop in our garden.  To be fair, the abundant green caterpillars did not consume the entire blade of every leaf.  The remaining nibbled leaves, however, in my husband’s view, no longer resembled food so much as a caterpillar farm that would be tedious to turn into food.  He ripped out the caterpillar farm, threw it on the compost bin, and replaced it with lettuce.  Unlike kale, which is in the mustard family (Brassicaceae), lettuce is in the sunflower family (Asteraceae) and is therefore not even remotely attractive to white cabbage butterflies.

Caterpillar damage on young green curly kale in the garden at Monticello

I was tempted to save the hole-riddled leaves from their compost fate, in part because I know that the munching of the caterpillars actually increased the foliar concentration of some of the compounds that contribute to kale’s nutritious reputation, and also because plummeting autumn temperatures impart an extraordinary sweetness to kale and the other cruciferous vegetables that are all actually varieties of the same species, Brassica oleracea: cauliflower, cabbage, kohlrabi, Brussels sprouts, Chinese broccoli, and collard greens.  The details of the chemical consequences of caterpillar consumption will soon get a post all their own.  This post is dedicated to the botany and evolutionary biology behind the amazing diversity of B. oleracea. Continue reading