Category Archives: Flavor

Preserving diversity with some peach-mint jam

We are knee deep in peach season, and now is the time to gather the most diverse array of peaches you can find and unite them in jam. Katherine reports on some new discoveries about the genetics behind peach diversity and argues for minting up your peach jam.

Jam inspiration

Fresh peaches at their peak are fuzzy little miracles, glorious just as they are. But peaches cooked into jam and spread across rough toast lose their buttery mouthfeel and dripping juice. To compensate for textural changes, processed peaches need a bit more adornment to heighten their flavor, even if it’s only a sprinkling of sugar. Normally I am not tempted to meddle with perfection by adding ginger or lavender or other flavors to peach jam. This year, however, as I plotted my jam strategy, the unusual juxtaposition of peach and mint found its way into my imagination over and over again, like the insistent echo of radio news playing in the background. Peach and mint, peach and mint, peach and mint – almost becoming a single word. To quiet the voice in my head I had to make some peach-mint jam. The odd combination turned out to be wonderful, and I’m now ready to submit the recipe to a candid world. As we will see below, it’s not without precedent. Mmmmmmpeachmint jam.

Panoply of peaches

Peach season has a rhythm, marked by the staggered rise and fall of short-lived varieties tossing their particular set of colors, flavors and aromas into the mix. Clingstones give way to freestones, miniatures yield to monsters, and a parade of white and yellow varieties debut throughout the summer.

Single varieties can be excellent, but the best peach jam draws on the diversity of colors and flavors that collide at the height of peach season. Candy-sweet fruits complement tarter ones, and an array of creamy vanilla butter rose almond notes round out the flavor. Most peach jam recipes call for a lot of sugar and a splash of lemon juice to counter the sweet; but we are not making lemon marmalade right now, we are making peach jam. Ideally, your fruit will be able to carry much of the sugar-acid balance on its own. In peach producing states, you are likely to find the widest array of peach varieties at farmers markets and roadside stands, but even supermarkets usually carry at least one white and one yellow peach, and if you let them ripen for a couple of days, they can be excellent. (Sadly, 2017 was hard on Georgia and South Carolina peach farmers, and they are not exporting much fruit).

Assortment of peach shapes: three round and a flat (doughnut) peach

Assortment of peach shapes: three round and a flat (doughnut) peach

For all their organoleptic complexity, peaches turn out to be fairly simple genetically. They have very little DNA – one of the smallest genomes of all flowering plants – organized into only 8 pairs of chromosomes that carry a smallish number of genes (Verde et al. 2013). Many of the characteristics we value are under very simple genetic control and are what we call Mendelian traits: they are clearly discrete (white or yellow flesh, flat or round fruit, etc.) and controlled by a single gene whose variants (alleles) are completely dominant or recessive (see examples in Lambert et al., 2016). Such straightforward patterns of inheritance are easy to observe without understanding a thing about DNA – Mendel documented them in peas in the late 19th century – and they have been well known to peach breeders for a very long time. Now that the peach genome has been sequenced, however, a big effort is underway to reveal the genetic mechanisms behind key traits and to identify genetic markers that can be used in meticulously precise breeding programs. 

Does color predict flavor?

The binary categories most obvious to peach eaters are yellow or white flesh, sweet-tart or sweet-sweet flavor, free or clinging pit, and round or flat (doughnut) shape. These four traits are determined by genes on four different chromosomes (Lambert et al. 2013) so they occur independently, and in theory breeders can select for any combination of them. In genetic terms, we say that they are unlinked and follow Mendel’s Law of Independent Assortment. In practice, however, breeders have favored certain combinations, thus white varieties tend to be super sweet (“sub-acid”) while yellow varieties usually balance sweet with tart. Yellow varieties are vastly more common than white ones in the U.S., perhaps because of tradition and perhaps because white peaches turn brown and show bruises, making them less suitable than yellow peaches for shipping or canning. Flat peaches are most often bred to be sweet and white, but tart and yellow varieties exist. Flat peaches develop cracks and are prone to molding at their distal ends (“bottoms”) where the style of the flower was.

Variation in peach shape at the stylar end (“bottom” but really top of the ovary). Clockwise from top left: round bottom; deeply indented bottom of a flat peach, indented bottom of a round peach; pointy bottom. The deep indentations of flat peaches leave them susceptible to mold. CLICK to enlarge

Because all peaches are fuzzy, it’s easy to overlook another binary trait: pubescence, or whether the fruit skin is fuzzy or smooth (glabrous). If a fruit doesn’t have any fuzz, then we call it a nectarine. Astonishingly, nectarines and peaches are just varieties of the same species, and only a single gene with two alternative alleles separates them. But it’s not that peaches have a gene for fuzz and nectarines don’t. Both varieties could make fuzz (specialized epidermal cells called trichomes). Rather, recent work suggests that another gene directs the skin to express the fuzz gene or not, and that the nectarine version of this so-called transcription factor is broken (Vendramin et al., 2014).

Peach fuzz. The style is still attached to this peach at the “bottom,” which is really the top of the fruit from the perspective of the flower. Pale spots on the skin are lenticels, which allow the fruit to breathe. CLICK to see the fuzz up close.

So why do nectarines seem to have their own slightly different texture and flavor profile? All nectarines appear to be descended from a single mutant peach that arose in Europe at least 500 years ago (Vendramin et al., 2014). I’d guess that peaches and nectarines taste and feel different because modern nectarines started with limited genetic variation – a single genotype – and ever since then breeders have been selecting nectarines for their own charming qualities.

Flesh and stone

Flesh texture is yet another binary trait. The peach varieties that we eat fresh usually have what geneticists call “melting flesh” and are very soft when fully ripe. You’ve probably had the joy of biting into a peach and slurping, head tilted slightly back, to keep the juice from running down your chin or forearm. Other peaches, including the popular Elberta variety, are tender but still firm and nonmelting when ripe because they have lost an ancestral gene that causes flesh to soften. Nonmelting peaches ship well (hence the success of Elberta) and keep their shape when canned. (Note that an unpleasant dry or mealy texture is its own phenomenon that comes from refrigeration at the wrong time.)

Yellow freestone peaches, one with a bit of anthocyanin in its flesh

Yellow freestone peaches, one with a bit of anthocyanin in its flesh

Unlike all the other traits described above, the melting flesh and stone adhesion traits do not behave independently of each other. Nonmelting peaches never have free stones, and breeders have been unable to produce this particular combination. Recent work explains the tight association between these traits and has proposed a model to explain their evolution (Gu et al., 2016). Whereas nonmelting flesh resulted from the complete loss of a gene during DNA replication, the freestone trait can be explained by a different mistake. Instead of being cut out, the melting flesh gene was duplicated, resulting in two copies close together on the chromosome. Over time, the second copy accumulated a few mutations that changed its function slightly, and the freestone trait was born. But this new gene also kept its old flesh melting powers, making it impossible for a freestone fruit to stay firm. See Table 1.

Table 1. Black lines represent chromosomes; genes are labeled with trait name. CLICK box to enlarge

If you eat a lot of peaches and nectarines, then over the course of the summer you just might see all combinations of fuzz, color, tartness, shape, texture, and pit adhesion. Since each of these traits is controlled separately, except that no freestone fruits can have firm flesh, there are 48 different possible configurations of just these basic characteristics! Obviously even more diversity comes from other genes. For example, melting flesh peaches can melt quickly or slowly, influenced by a complicated set of interacting loci (Serra et al., 2017), and weak expression of the freestone allele probably causes the semi-clingstone condition (Han et al. 2016). Skin and flesh can have more or less purple-red anthocyanin pigmentation. Most important for us as we contemplate jam, are the subtle flavors and aromas that cannot be explained by simple Mendelian genetics.

Peach flavor and the surprisingly satisfying peach-mint combination

The exquisite charms of a good peach emerge only after the broad initial perceptions of mouthfeel and sugar-acid balance have faded. A recent study detected over 80 different volatile organic compounds emanating from the skin and flesh of assorted ripe peaches and nectarines. Because machines can smell things that humans cannot, a panel of peach tasters recorded their sensory perceptions of the same 43 varieties and the data were compared. Among the measured compounds that were most strongly correlated with intense ripe fruit aroma were two kinds of gamma-lactone (Bianchi et al., 2017). Gamma-lactones impart creamy, coconut, vanilla, and toasted nut flavors – a combination familiar to wine and whiskey drinkers. Wines and distilled alcohol aged in oak barrels become infused with these compounds, which are often called oak or whiskey lactones for that reason.

Given this flavor profile, it is not an obvious move to pair peaches with spearmint. As Jeanne has explained, spearmint’s flavor is dominated by an isomer of carvone, which tastes cool and green, not rich and warm. But as I claimed above, peach-mint is not unprecedented. Classically, the gamma-lactones in bourbon are contrasted with spearmint in mint juleps. Chocolate carries notes of peach fruit and toasted nuts, and it is often flavored with mint.

Peaches are much more subtle tasting than bourbon, and your aim is to brighten them up, not overwhelm them with mint. My peach-mint jam recipe lets you adjust the mint flavor to your taste by steeping a bundle of fresh spearmint in the hot cooked peaches only as long as you wish. Because this recipe contains very little sugar, I recommend refrigerating the unopened jars of jam, even if you process and seal them in sterile canning jars. If you can’t make room in your own fridge, share your jam with friends or, better yet, with those neighbors you have been meaning to meet. After all, the integrity of precious and fragile things, like peaches and democracy, are best preserved by an eternally vigilant community of diverse and peaceful citizens. Jam on


Peach-mint jam

  • 10 to 15 peaches, ideally from several varieties with different colors and flavors (having extra lets you choose the best balance)
  • 1 bunch of spearmint (not peppermint), about a dozen stems, washed. If you have kitchen string, tie the stems into a bundle, which makes them easier to remove.
  • 1C sugar (or less if your peaches are very sweet)
  • 5 or 6 half-pint sized canning jars and lids, sterilized 

1. Wash the peaches and appreciate their shapes, colors, smells, etc. You may use nectarines as well, since they are peaches too.

2. Chop the peaches into bite-sized chunks, keeping the skin on because it adds color and flavor. A small serrated knife works best on resistant skin over soft flesh. As you remove the pits, notice whether they cling. Taste a bit of each peach and sort out any flavorless or mealy fruits. Especially at the end of the season when peach flavor and texture is unreliable, I often dehydrate subpar peaches to use in winter oatmeal. Drying concentrates the flavor and repairs the texture.

An assortment of chopped peaches

3. Put the peaches into a saucepan about twice the volume of the peaches. Add the sugar and let it sit for 10 minutes or so to dissolve and draw out some of the peach juice.

4. Start the peaches on medium heat and stir and mash them with a spoon as they soften. If there is not enough liquid to keep peaches from sticking, reduce the heat until more liquid is released. Eventually the mixture will come to a high simmer, and you want to keep it there.

5. Cook the peach mixture, breaking up the bits with a spoon, until it thickens to your ideal consistency. This can take an hour or more and will depend on how wide your pot is and how juicy your peaches are. Low sugar jams with no added pectin will always be on the runny side.

6. Turn off the heat and submerge the bunch of mint, pressing it with the spoon. If you have a cocktail muddler you can use that, but keep the leaves intact. If you do not turn off the heat, you will boil off the very mint volatiles you want to keep.

7. Stir and taste the jam every 5 minutes or so until it has enough mint flavor for your taste. The mint flavor enters very quickly, so check often.

8. Remove the bundle of mint and scrape as much jam from the leaves as possible without getting bits of mint leaf in the jam.

9. Ladle the jam into the sterile jars and process 10 minutes in a water bath to seal, according to standard canning practices. If you plan to eat the jam right away, you can skip the sealing part. Just be sure to tell your friends and neighbors to refrigerate and eat theirs quickly too.


References

Bianchi, T., Weesepoel, Y., Koot, A., Iglesias, I., Eduardo, I., Gratacós-Cubarsí, M., … & van Ruth, S. (2017). Investigation of the aroma of commercial peach (Prunus persica L. Batsch) types by Proton Transfer Reaction–Mass Spectrometry (PTR-MS) and sensory analysis. Food Research International. https://doi.org/10.1016/j.foodres.2017.05.007

Gu, C., Wang, L., Wang, W., Zhou, H., Ma, B., Zheng, H., … & Han, Y. (2016). Copy number variation of a gene cluster encoding endopolygalacturonase mediates flesh texture and stone adhesion in peach. Journal of experimental botany, 67(6), 1993-2005.  https://doi.org/10.1093/jxb/erw021

Lambert, P., Campoy, J. A., Pacheco, I., Mauroux, J. B., Linge, C. D. S., Micheletti, D., … & Troggio, M. (2016). Identifying SNP markers tightly associated with six major genes in peach [Prunus persica (L.) Batsch] using a high-density SNP array with an objective of marker-assisted selection (MAS). Tree Genetics & Genomes, 12(6), 121. https://link.springer.com/article/10.1007/s11295-016-1080-1

Serra, O., Giné-Bordonaba, J., Eduardo, I., Bonany, J., Echeverria, G., Larrigaudière, C., & Arús, P. (2017). Genetic analysis of the slow-melting flesh character in peach. Tree Genetics & Genomes, 13(4), 77.

Vendramin, E., Pea, G., Dondini, L., Pacheco, I., Dettori, M. T., Gazza, L., … & Verde, I. (2014). A unique mutation in a MYB gene cosegregates with the nectarine phenotype in peach. PLoS One, 9(3), e90574. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090574

Verde, I., Abbott, A. G., Scalabrin, S., Jung, S., Shu, S., Marroni, F., … & Zuccolo, A. (2013). The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature genetics, 45(5), 487-494.  https://www.nature.com/ng/journal/v45/n5/full/ng.2586.html

Botany Lab of the Month, Presidential Inauguration Edition: Saffron

If you like your spices gold-colored and expensive, find some fresh Crocus sativus flowers and grab ‘em by the…disproportionately large female reproductive organ. Small hands might work best, though it might turn your skin orange. Saffron is probably from the Middle East. If that bothers you, you may want to ban it from your spice shelves, however ill that bodes for the quality of your cabinet. After all, there is a stigma against that sort of thing.

The most expensive oversized reproductive organ in the world

safran-weinviertel_niederreiter_2_gramm_8285

A pile of dried saffron stigmas (“threads”). Photo from Wikipedia

You may know that saffron is the most expensive spice in the world. A Spanish farmer sold his crop of high quality saffron this year for four euros per gram, which is a ninth of today’s price of gold (36 euros per gram). Saffron is expensive because its production requires a huge amount of labor and land. Saffron production is labor- and land-intensive because saffron is a botanically unique food item that defies mechanical harvest and accounts for a miniscule proportion of the plant that bears it. The saffron threads sold as spice are the dried stigmas of the flowers of the saffron crocus (Crocus sativus, family Iridaceae). Recall that the stigma is the part of the flower’s female reproductive organs that catches pollen. Pollen travels from the stigma through the style into the flower’s ovary (collectively, the stigma, style, and ovary comprise the pistil). Continue reading

Buddha’s hand citrons and a wish for peace on earth in 2017

Winter is the season for citrus fruit, and January is the month for breaking out of old routines, so stop staring at your navel and learn about one of the weirder citrus varieties.

I’ll never forget the day one of my general botany students brought to class a Buddha’s hand citron, pulled from a tree right outside our classroom. I had only recently moved to northern California from Indiana, and I’d never seen anything like it: it was a monstrous mass of a dozen pointed twisted fingers splayed irregularly from a stout base. It had the firm heft and girth of a grapefruit and the unmistakable pebbled skin of a citrus fruit, so I wondered whether my student had found a grossly deformed grapefruit; but the oil in the peel smelled heavenly and not at all like a grapefruit. In class we cut through a big finger and found no juicy segments, just white citrus pith all the way through.

Immature Buddha's hand on the tree

Immature Buddha’s hand on the tree

We eventually discovered that this fascinating fruit was a Buddha’s hand citron, Citrus medica variety sarcodactylis, meaning fleshy (sarco-) fingered (-dactyl) citron. Since that day many years ago I’ve become an unapologetic (if surreptitious) collector of the fruits from that same campus tree. The citrons do not drop from the tree on their own, yet I often find one or two lying nearby, probably torn off by a curious tourist or student and then abandoned. Obviously these fruits need a good home, and where better than the window sill in my office?

The first time I left one closed up in my office over a weekend, I opened the door on Monday morning to a waft of fruity floral aroma. It turns out that many people in China and India use the fruit to scent the air, although in west Asia and Europe the fleshy fingers are more often candied or used to flavor alcohol. I do both: the fruits make my office smell nice until they are fully yellow, and then I cook them.

It can be difficult or expensive to get your own hands on a fingered citron, but it’s easy to find a navel orange almost any time of the year. Fortunately, the patterns underlying the morphology of the fingered fruit can also be seen in an everyday navel orange. Between our photos of Buddha’s hands and your own navel orange, you should be able to follow along at home. Continue reading

Winter mint

This is our second of our two contributions to Advent Botany 2015. All the essays are great!

An early image of candy canes. From Wikipedia

An early image of candy canes. From Wikipedia

The candy cane, that red- and white-striped hard candy imbued with peppermint oil, is a signature confection of the winter holidays. Peppermint has a long history of cultivation and both medicinal and culinary use. Infusions of the plant or its extract have been used for so many hundreds of years throughout Europe, North Africa and Western Asia that the early history of peppermint candies, including cane-shaped ones, is murky. Fortunately, the biology behind peppermint’s famous aroma is better known than the story of how it came to be a Christmas staple. Continue reading

Sugar

This is our first of two contributions to Advent Botany 2015.

Sugar plums dance, sugar cookies disappear from Santa’s plate, and candied fruit cake gets passed around and around. Crystals of sugar twinkle in the Christmas lights, like scintillas of sunshine on the darkest day of the year. Katherine and Jeanne explore the many plant sources of sugar.

Even at a chemical level, there is something magical and awe-inspiring about sugar. Plants – those silent, gentle creatures – have the power to harness air and water and the fleeting light energy of a giant fireball 93 million miles away to forge sugar, among the most versatile compounds on earth, and a fuel used by essentially all living organisms.

Sugar naturally occurs in various chemical forms, all arising from fundamental 3-carbon components made inside the cells of green photosynthetic tissue. In plant cells, these components are exported from the chloroplasts into the cytoplasm, where they are exposed to a series of enzymes that remodel them into versions of glucose and fructose (both 6-carbon monosaccharides). One molecule of glucose and one of fructose are then joined to form sucrose (a 12-carbon disaccharide). See figure 1.

Sugars: glu, fru, and sucrose

Figure 1.

Sucrose is what we generally use as table sugar, and it is the form of sugar that a plant loads into its veins and transports throughout its body to be stored or used by growing tissues. When the sucrose reaches other organs, it may be broken back down into glucose and fructose, converted to other sugars, or combined into larger storage or structural molecules, depending on its use in that particular plant part and species. Since we extract sugar from various parts and species, the kind of sugar we harvest from a plant, and how much processing is required, obviously reflects the plant’s own use of the sugar. Continue reading

The new apples: an explosion of crisp pink honey sweet snow white candy crunch

What’s in a name?  An apple with an old fashioned name could taste as sweet, but it might not sell.  The most sought after branded varieties reveal what people look for in an apple: sweet and crunchy and bright white inside.  Do the fruits live up to their names?  Are Honeycrisp apples crunchier than others?  Do Arctics actually stay white?  We zoom in on the cells to find out.

Some of you will remember the era when the Superbowl halftime show repeatedly featured Up With People.  That was around the time when Granny Smiths arrived in our supermarkets and finally gave Americans a third apple, a tart and crunchy alternative to red and golden delicious.  Those were simple days.  Continue reading

Taking advantage of convergent terpene evolution in the kitchen

The Cooks Illustrated recipe masters recently added nutmeg and orange zest to a pepper-crusted steak to replace two flavorful terpenes, pinene and limonene, lost from black pepper when simmered in oil. In doing so they take advantage of convergent evolution of terpenoids, the most diverse group of chemical products produced by plants. Nutmeg and orange zest, though, were hardly their only options.

The terpene swap

Black pepper (Piper nigrum) growing in Cambodia (photo by L. Osnas)

Black pepper growing (photo by L. Osnas)

To develop satisfying crunch, the Cooks Illustrated recipe for pepper-crusted beef tenderloin requires a prodigious quantity of coarsely ground black pepper (Piper nigrum; family Piperaceae). If applied to the meat raw, however, in the recipe authors’ view, this heap of pepper generates an unwelcome amount of spicy heat. To mellow it, the recipe authors recommend simmering the pepper in oil and straining it out of the oil before adding it to the dry rub. The hot oil draws out the alkaloid piperine, which makes black pepper taste hot, from the cracked black pepper fruits (peppercorns).

Nutmeg seed showing brown seed coat folded within the ruminate endosperm

Nutmeg seed

To their dismay, however, the recipe authors discovered that the hot oil also removes flavorful compounds from the cracked pepper, in particular the terpenes pinene and limonene. To rectify this flavor problem, the recipe authors added pinene-rich nutmeg (Myristica fragrans; Myristicaceae) and limonene-rich orange (Citrus x sinensis; Rutaceae) zest to the dry rub, along with the simmered black pepper. In doing so they take advantage of widespread and diverse array of terpenoids in the plant kingdom. Continue reading

Origin stories: spices from the lowest branches of the tree

Why do so many rich tropical spices come from a few basal branches of the plant evolutionary tree?  Katherine looks to their ancestral roots and finds a cake recipe for the mesozoic diet.

I think it was the Basal Angiosperm Cake that established our friendship a decade ago.  Jeanne was the only student in my plant taxonomy class to appreciate the phylogeny-based cake I had made to mark the birthday of my co-teacher and colleague, Will Cornwell.  Although I am genuinely fond of Will, I confess to using his birthday as an excuse to play around with ingredients derived from the lowermost branches of the flowering plant evolutionary tree. The recipe wasn’t even pure, since I abandoned the phylogenetically apt avocado for a crowd-pleasing evolutionary new-comer, chocolate.  It also included flour and sugar, both monocots.  As flawed as it was, the cake episode showed that Jeanne and I share some unusual intellectual character states – synapomorphies of the brain – and it launched our botanical collaborations.

Branches at the base of the angiosperm tree
The basal angiosperms (broadly construed) are the groups that diverged from the rest of the flowering plants (angiosperms) relatively early in their evolution.  They give us the highly aromatic spices that inspired my cake – star anise, black pepper, bay leaf, cinnamon, and nutmeg.  They also include water lilies and some familiar tree species – magnolias, tulip tree (Liriodendron), bay laurels, avocado, pawpaw (Asimina), and sassafras. Continue reading

Nasturtiums and the birds and the bees

Hummingbirds and ancient bees are responsible for the color and shape of nasturtium blossoms and have a unique view of them, explains Jeanne over salad. 

Nasturtium flowers cut into tomato salad with parsley

Nasturtium flowers cut into tomato salad with parsley

Fall frost hasn’t yet claimed our nasturtiums (Tropaeolum majus; Tropaeolaceae family). The large, colorful blooms amidst the round leaves are still spilling over planting boxes.  All parts of the plant are edible and boast spicy mustard oil glucosinolates, betraying the plant’s membership in the order Brassicales, along with the cruciferous vegetables and mustard in the Brassicaceae family, capers (Capparaceae), and papaya (Caricaceae; try the seeds, as suggested here). I’ve heard that the immature flower buds and immature seed pods can be pickled like capers, but I haven’t tried it yet. Mostly I use the flowers, throwing a few in a salad or chopping them coarsely with other herbs and stirring them into strained yogurt or butter to put on top of roasted vegetables or lentils. In addition to the mustardy kick, the sweet flower nectar adds to these dishes. Continue reading

Okra – what’s not to like?

What is hairy, green, full of slime, and delicious covered in chocolate? It has to be okra, bhindi, gumbo, Abelmoschus esculentus, the edible parent of musk. Katherine explores okra structure, its kinship with chocolate, and especially its slippery nature. What’s not to like?

Okra flower with red fruit below

Okra flower with red fruit below

People often ask me about okra slime. Rarely do they ask for a good chocolate and okra recipe, which I will share unbidden. With or without the chocolate, though, okra is a tasty vegetable. The fruits can be fried, pickled, roasted, sautéed, and stewed. Young leaves are also edible, although I have never tried them and have no recipes. Okra fruits are low in calories and glycemic index and high in vitamin C, fiber, and minerals. The plant grows vigorously and quickly in hot climates, producing large and lovely cream colored flowers with red centers and imbricate petals. The bright green or rich burgundy young fruits are covered in soft hairs. When they are sliced raw, they look like intricate lace doilies. In stews, the slices look coarser, like wagon wheels. And yes, okra is slimy. And it is in the mallow family (Malvaceae), along with cotton, hibiscus, durian fruit, and chocolate. Continue reading