Category Archives: Flavor

#Celery

It’s hard to get too excited about eating celery, but if you can manage to see a dip-drenched celery stick as a dynamically loaded cantilevered beam, then its stringy bits suddenly start to look like incredible feats of bioengineering. The mildest mannered member of the crudité platter turns out to be a misunderstood superhero.

If you are about to celebrate Thanksgiving, chances are good that you have a lot of celery in your immediate future. It shows up in dressing and cranberry relish and especially in leftovers, like turkey salad sandwiches. When I was growing up, my sister and I were tasked with picking the carcass for turkey hash, which, in our family, was basically turkey soup stretched with lots of celery and potatoes and never enough salt. Although frugal and nutritious, this one-pot crusade against food waste did not inspire a lifelong love of cooked celery. But you don’t have to like celery the food to admire its alter ego, celery the plant.

Leaves, not stems

Celery the food may not excite you, but celery the plant – the bundle of dynamically loaded cantilevered beams – is a biomechanical superhero worth exploring in the kitchen. Celery (Apium graveolens) is one of the clearest examples of how a plant’s life in the wild over tens of millions of years yielded anatomical adaptations that determine how we use it now. Because of its evolutionary responses to biomechanical challenges, it is now perfectly built to hold peanut butter or scoop dip, and when sliced, its crescent moon shapes are pretty in soup and chopped salads. On the other hand, its tough strings catch between teeth and are not easy to digest.

Celery stalks are the petioles (“stalks”) of compound leaves. They are not stems, in spite of widespread misrepresentation in elementary school lesson plans. They may look like stems to some people because they are thick and fleshy and have prominent veins running lengthwise through them. But there are several morphological clues to their leafy identity, including these: Continue reading

Carrot top pesto through the looking glass

Isomers are molecules that have the same chemical constituents in different physical arrangements. Some terpenoid isomers have very different aromas and are important food seasonings. A batch of carrot top pesto led to an exploration of intriguing terpenoid isomers in the mint, carrot, and lemon families.

“Oh, c’mon. Try it,” my husband admonished me with a smile. “If anyone would be excited about doing something with them, I should think it would be you.”

The “them” in question were carrot tops, the prolific pile of lacy greens still attached to the carrots we bought at the farmer’s market. I have known for years that carrot tops are edible and have occasionally investigated recipes for them, but that was the extent of my efforts to turn them into food. My excuse is that I harbored niggling doubts that carrot tops would taste good. Edible does not, after all, imply delicious. My husband had thrown down the gauntlet, though, by challenging my integrity as a vegetable enthusiast. I took a long look at the beautiful foliage on the counter.

“Fine,” I responded, sounding, I am sure, resigned. “I’ll make a pesto with them.”

Carrot tops, it turns out, make a superb pesto. I have the passion of a convert about it, and not just because my carrot tops will forevermore meet a fate suitable to their bountiful vitality. The pesto I made combined botanical ingredients from two plant families whose flavors highlight the fascinating chemistry of structural and stereo isomers. Continue reading

Preserving diversity with some peach-mint jam

We are knee deep in peach season, and now is the time to gather the most diverse array of peaches you can find and unite them in jam. Katherine reports on some new discoveries about the genetics behind peach diversity and argues for minting up your peach jam.

Jam inspiration

Fresh peaches at their peak are fuzzy little miracles, glorious just as they are. But peaches cooked into jam and spread across rough toast lose their buttery mouthfeel and dripping juice. To compensate for textural changes, processed peaches need a bit more adornment to heighten their flavor, even if it’s only a sprinkling of sugar. Normally I am not tempted to meddle with perfection by adding ginger or lavender or other flavors to peach jam. This year, however, as I plotted my jam strategy, the unusual juxtaposition of peach and mint found its way into my imagination over and over again, like the insistent echo of radio news playing in the background. Peach and mint, peach and mint, peach and mint – almost becoming a single word. To quiet the voice in my head I had to make some peach-mint jam. The odd combination turned out to be wonderful, and I’m now ready to submit the recipe to a candid world. As we will see below, it’s not without precedent. Mmmmmmpeachmint jam. Continue reading

Botany Lab of the Month, Presidential Inauguration Edition: Saffron

If you like your spices gold-colored and expensive, find some fresh Crocus sativus flowers and grab ‘em by the…disproportionately large female reproductive organ. Small hands might work best, though it might turn your skin orange. Saffron is probably from the Middle East. If that bothers you, you may want to ban it from your spice shelves, however ill that bodes for the quality of your cabinet. After all, there is a stigma against that sort of thing.

The most expensive oversized reproductive organ in the world

safran-weinviertel_niederreiter_2_gramm_8285

A pile of dried saffron stigmas (“threads”). Photo from Wikipedia

You may know that saffron is the most expensive spice in the world. A Spanish farmer sold his crop of high quality saffron this year for four euros per gram, which is a ninth of today’s price of gold (36 euros per gram). Saffron is expensive because its production requires a huge amount of labor and land. Saffron production is labor- and land-intensive because saffron is a botanically unique food item that defies mechanical harvest and accounts for a miniscule proportion of the plant that bears it. The saffron threads sold as spice are the dried stigmas of the flowers of the saffron crocus (Crocus sativus, family Iridaceae). Recall that the stigma is the part of the flower’s female reproductive organs that catches pollen. Pollen travels from the stigma through the style into the flower’s ovary (collectively, the stigma, style, and ovary comprise the pistil). Continue reading

Buddha’s hand citrons and a wish for peace on earth in 2017

Winter is the season for citrus fruit, and January is the month for breaking out of old routines, so stop staring at your navel and learn about one of the weirder citrus varieties.

I’ll never forget the day one of my general botany students brought to class a Buddha’s hand citron, pulled from a tree right outside our classroom. I had only recently moved to northern California from Indiana, and I’d never seen anything like it: it was a monstrous mass of a dozen pointed twisted fingers splayed irregularly from a stout base. It had the firm heft and girth of a grapefruit and the unmistakable pebbled skin of a citrus fruit, so I wondered whether my student had found a grossly deformed grapefruit; but the oil in the peel smelled heavenly and not at all like a grapefruit. In class we cut through a big finger and found no juicy segments, just white citrus pith all the way through.

Immature Buddha's hand on the tree

Immature Buddha’s hand on the tree

We eventually discovered that this fascinating fruit was a Buddha’s hand citron, Citrus medica variety sarcodactylis, meaning fleshy (sarco-) fingered (-dactyl) citron. Since that day many years ago I’ve become an unapologetic (if surreptitious) collector of the fruits from that same campus tree. The citrons do not drop from the tree on their own, yet I often find one or two lying nearby, probably torn off by a curious tourist or student and then abandoned. Obviously these fruits need a good home, and where better than the window sill in my office?

The first time I left one closed up in my office over a weekend, I opened the door on Monday morning to a waft of fruity floral aroma. It turns out that many people in China and India use the fruit to scent the air, although in west Asia and Europe the fleshy fingers are more often candied or used to flavor alcohol. I do both: the fruits make my office smell nice until they are fully yellow, and then I cook them.

It can be difficult or expensive to get your own hands on a fingered citron, but it’s easy to find a navel orange almost any time of the year. Fortunately, the patterns underlying the morphology of the fingered fruit can also be seen in an everyday navel orange. Between our photos of Buddha’s hands and your own navel orange, you should be able to follow along at home. Continue reading

Winter mint

This is our second of our two contributions to Advent Botany 2015. All the essays are great!

An early image of candy canes. From Wikipedia

An early image of candy canes. From Wikipedia

The candy cane, that red- and white-striped hard candy imbued with peppermint oil, is a signature confection of the winter holidays. Peppermint has a long history of cultivation and both medicinal and culinary use. Infusions of the plant or its extract have been used for so many hundreds of years throughout Europe, North Africa and Western Asia that the early history of peppermint candies, including cane-shaped ones, is murky. Fortunately, the biology behind peppermint’s famous aroma is better known than the story of how it came to be a Christmas staple. Continue reading

Sugar

This is our first of two contributions to Advent Botany 2015.

Sugar plums dance, sugar cookies disappear from Santa’s plate, and candied fruit cake gets passed around and around. Crystals of sugar twinkle in the Christmas lights, like scintillas of sunshine on the darkest day of the year. Katherine and Jeanne explore the many plant sources of sugar.

Even at a chemical level, there is something magical and awe-inspiring about sugar. Plants – those silent, gentle creatures – have the power to harness air and water and the fleeting light energy of a giant fireball 93 million miles away to forge sugar, among the most versatile compounds on earth, and a fuel used by essentially all living organisms.

Sugar naturally occurs in various chemical forms, all arising from fundamental 3-carbon components made inside the cells of green photosynthetic tissue. In plant cells, these components are exported from the chloroplasts into the cytoplasm, where they are exposed to a series of enzymes that remodel them into versions of glucose and fructose (both 6-carbon monosaccharides). One molecule of glucose and one of fructose are then joined to form sucrose (a 12-carbon disaccharide). See figure 1.

Sugars: glu, fru, and sucrose

Figure 1.

Sucrose is what we generally use as table sugar, and it is the form of sugar that a plant loads into its veins and transports throughout its body to be stored or used by growing tissues. When the sucrose reaches other organs, it may be broken back down into glucose and fructose, converted to other sugars, or combined into larger storage or structural molecules, depending on its use in that particular plant part and species. Since we extract sugar from various parts and species, the kind of sugar we harvest from a plant, and how much processing is required, obviously reflects the plant’s own use of the sugar. Continue reading

The new apples: an explosion of crisp pink honey sweet snow white candy crunch

What’s in a name?  An apple with an old fashioned name could taste as sweet, but it might not sell.  The most sought after branded varieties reveal what people look for in an apple: sweet and crunchy and bright white inside.  Do the fruits live up to their names?  Are Honeycrisp apples crunchier than others?  Do Arctics actually stay white?  We zoom in on the cells to find out.

Some of you will remember the era when the Superbowl halftime show repeatedly featured Up With People.  That was around the time when Granny Smiths arrived in our supermarkets and finally gave Americans a third apple, a tart and crunchy alternative to red and golden delicious.  Those were simple days.  Continue reading

Taking advantage of convergent terpene evolution in the kitchen

The Cooks Illustrated recipe masters recently added nutmeg and orange zest to a pepper-crusted steak to replace two flavorful terpenes, pinene and limonene, lost from black pepper when simmered in oil. In doing so they take advantage of convergent evolution of terpenoids, the most diverse group of chemical products produced by plants. Nutmeg and orange zest, though, were hardly their only options.

The terpene swap

Black pepper (Piper nigrum) growing in Cambodia (photo by L. Osnas)

Black pepper growing (photo by L. Osnas)

To develop satisfying crunch, the Cooks Illustrated recipe for pepper-crusted beef tenderloin requires a prodigious quantity of coarsely ground black pepper (Piper nigrum; family Piperaceae). If applied to the meat raw, however, in the recipe authors’ view, this heap of pepper generates an unwelcome amount of spicy heat. To mellow it, the recipe authors recommend simmering the pepper in oil and straining it out of the oil before adding it to the dry rub. The hot oil draws out the alkaloid piperine, which makes black pepper taste hot, from the cracked black pepper fruits (peppercorns).

Nutmeg seed showing brown seed coat folded within the ruminate endosperm

Nutmeg seed

To their dismay, however, the recipe authors discovered that the hot oil also removes flavorful compounds from the cracked pepper, in particular the terpenes pinene and limonene. To rectify this flavor problem, the recipe authors added pinene-rich nutmeg (Myristica fragrans; Myristicaceae) and limonene-rich orange (Citrus x sinensis; Rutaceae) zest to the dry rub, along with the simmered black pepper. In doing so they take advantage of widespread and diverse array of terpenoids in the plant kingdom. Continue reading

Origin stories: spices from the lowest branches of the tree

Why do so many rich tropical spices come from a few basal branches of the plant evolutionary tree?  Katherine looks to their ancestral roots and finds a cake recipe for the mesozoic diet.

I think it was the Basal Angiosperm Cake that established our friendship a decade ago.  Jeanne was the only student in my plant taxonomy class to appreciate the phylogeny-based cake I had made to mark the birthday of my co-teacher and colleague, Will Cornwell.  Although I am genuinely fond of Will, I confess to using his birthday as an excuse to play around with ingredients derived from the lowermost branches of the flowering plant evolutionary tree. The recipe wasn’t even pure, since I abandoned the phylogenetically apt avocado for a crowd-pleasing evolutionary new-comer, chocolate.  It also included flour and sugar, both monocots.  As flawed as it was, the cake episode showed that Jeanne and I share some unusual intellectual character states – synapomorphies of the brain – and it launched our botanical collaborations.

Branches at the base of the angiosperm tree
The basal angiosperms (broadly construed) are the groups that diverged from the rest of the flowering plants (angiosperms) relatively early in their evolution.  They give us the highly aromatic spices that inspired my cake – star anise, black pepper, bay leaf, cinnamon, and nutmeg.  They also include water lilies and some familiar tree species – magnolias, tulip tree (Liriodendron), bay laurels, avocado, pawpaw (Asimina), and sassafras. Continue reading