Category Archives: Uncategorized

Some favorite Christmas posts from the past

As we celebrate the solstice and count down the days until Christmas and the New Year, we Botanists in the Kitchen are looking back at some posts of Christmas past.

The leftovers of 2020

Do you still have a bunch of celery leftover from Thanksgiving in the back of your fridge? With no holiday parties this year, you won’t be able to sneak it onto a holiday crudités platter. You could assemble silly little peanut butter and celery reindeer snacks, but that would just generate messier leftovers. Katherine tells you why you should put it all into a very elegant silky soup for the grownups.

Some of my happiest teaching days begin when I drag a rattling cartload of vegetables and razor blades over the paving stones and across the quad to my classroom. Then, for a couple of hours, edible roots and stems and leaves are handled, poked, hacked at, licked, bitten into, and passed between lab partners. Some of them become projectiles. Most become snacks right there. Potatoes fall into backpacks to be cooked later in the dorm. By the time we clean up, the scant inedible scraps fit into one small bag that I can tip inconspicuously into a campus compost bin.

It’s hard to imagine those days now. Before the pandemic, the only real potential hazards of these labs were food allergies and dissecting tool injuries. While I did provide hand wipes, nobody used them. Now after nine months of pandemic protocols, even just describing the labs triggers aversion.

Trying to teach botany during a pandemic is exactly why I ended up with leftover celery, and much too much of it. The week before Thanksgiving, Jeanne and I taught a virtual botany lab by video conference with some of the volunteers for the Friends of Edgewood Park. We imagined a plant-based Thanksgiving dinner and walked the volunteers through each of the main plant ingredients, while they dissected their own samples at home. The participants were good sports, and it was fun, even if nobody started a Brussels sprouts fight.

Celery (left) and fennel (right)

Celery (left) with close relative fennel (right)

After the event, it was a boon to have the remaining potatoes, sweet potatoes, herbs, leeks, oranges, green beans, and cranberries I had gathered for the demonstration. They were mostly still intact and free from community spittle, and I had plans for each of them. But then there were also those two imposing bundles of celery – stringy, strong tasting, and too long for the fridge. There was nobody I could send them home with. I certainly did not want to eat that much raw celery. Braising it à la Julia Child was no more appealing as I have always hated cooked celery.

Or so I thought. After consulting with Jeanne, a genius with umbel-bearing species, I improvised a basic celery and potato soup and added a little bit of the leftover rosemary. Slow cooking and a whirl in the blender transformed it into something silky and rich and delicious, without any of the strong overcooked green flavor I associate with celery chunks in soup. The recipe is below. But how did this simple treatment completely change the celery flavor?

base of a bunch of celery, showing leaf arrangement

Base of a bunch of celery, trimmed to show leaf arrangement

Fortunately for us all, the amazing Harold McGee has just published an instant classic, Nose Dive: a Field Guide to the World’s Smells. For his book, McGee has compiled table after table of the dominant smells (and their source molecules) for a wide array of vegetables and herbs, including celery. His painstaking work helped me understand why I should stop omitting this complicated species from my mirepoix.

From heavy scented to heaven scented

Raw celery has a fresh green scent to match its crisp texture, but it’s not bland, and it won’t hide behind the rest of the crudités on the platter. Its scientific name is Apium graveolens, and while the genus name has something to do with bees, the species name means “heavy-scented.” Its distinct celery smell comes largely from a volatile molecule called sedanenolide, which is a type of phthalide (McGee 2020). As assertive as it can be, this molecule affects our perception even at concentrations below what we can detect. One study found that a small amount of sedanenolide added to chicken broth raised all eleven measured positive flavor qualities relative to plain broth, as rated by a panel of tasters (Kurobayashi et al. 2008). So in addition to contributing a bit of its own flavor, the sedanenolide in celery boosts our sense that a dish is thick, savory, and complex.

Sedanenolide is not altered chemically by boiling, although it is volatile so some of it probably evaporates when celery is cooked. But cooking celery also transforms some of its chemical components to generate a completely different flavor arising from my new favorite molecule, sotolon.

Sotolon is described as tasting like fenugreek, which may not be helpful information if you have never tasted fenugreek by itself. Fenugreek seeds taste like maple syrup, but with a funky edge that veers into what some authors describe as “curry” at higher concentrations. It reminds me of the faint onion scent that lingers in the wood grain of a well used cutting board.

Fenugreek seeds. Click to enlarge.

Sotolon also contributes warm maple-like flavors to sherry and Madeira wines. I sometimes add it to oatmeal along with cinnamon, cloves, nutmeg, and ginger. You have to be careful with ground fenugreek, though, because the scent remains on your fingers all day, and you don’t want your oatmeal tasting faintly of onions. Reading about sotolon made me crave it, so I spiked some tea with fenugreek, and alongside the maple flavor, I caught occasional hints of celery seed in the steam.

Rosemary

Thanks to McGee’s masterful book, with an incredible index, I learned about some of my soup’s other scents as well. For example, cooked potatoes develop a nutty and earthy flavor because of pyrazines. Of course they also carry some sweetness from the carbohydrates stored in their flesh. Rosemary contains several interesting molecules that give it a resinous camphor scent, but in the soup, the rosemary notes mainly reflected its more woodsy compounds, borneol and peppery rotundone.

Borneol is a monoterpenoid that contributes to the scent of some pines and cypress, as well as ginger and citrus peels (McGee 2020). Rotundone is the sesquiterpenoid molecule that imparts a characteristic black-pepper aroma to Australian shiraz wines, and that’s where it was first discovered in 2008. It has since been identified in (of course) French syrah, some other wine varietals, black pepper, rosemary, basil, and even apple and mango (Geffroy et al. 2020). A substantial proportion of unlucky humans cannot smell rotundone at all. In one panel of French wine professionals and connoisseurs, 31% failed to detect it (Geffroy et al. 2017). Sadly, in COVID times we have all learned the term for this: anosmia.

With all that maple pepper woodsy pine aroma wafting from the bowl, no wonder my simple little three-plant soup turned out to taste like a walk in the woods on a sunny early winter’s day. Not bad for leftovers.

Portion of an advertisement from 1951 for Campbells soup

Portion of a 1952 advertisement from Better Homes and Gardens for Campbells soup. Click to enlarge.

Leftover celery and potato soup

  • Celery stalks (petioles, the part of the leaf below the flat compound blade)
  • Unpeeled chopped potatoes, at twice the volume of the celery. I used several small waxy types and a baking potato because they were left over from the virtual lab demonstration. The type may not matter that much
  • Several tablespoons of butter (1-2 tablespoons per bunch of celery)
  • Olive oil
  • Fresh sprig of rosemary, 2-3 inches long
  • Salt and pepper to taste

Chop celery petioles (“stalks”) and take note of their raw volume. Put the celery and the sprig of rosemary into a large stock pot and cook them slowly and gently in a generous dollop of butter, about one mounded tablespoon for each bunch of celery.

When the celery is very soft and translucent, but not brown, add chopped potatoes. The volume of potato  should be about twice that of the raw celery. Add a dash of olive oil and stir for a few minutes but do not brown the vegetables.

Add water to twice the depth of the vegetables and simmer until the potatoes are completely soft. Add salt and pepper.

Remove the rosemary sprig, but leave any leaves that have fallen off of the stem. Let the soup cool and purée it. Reheat to serve and add water to thin if necessary.

I was lucky enough to have some fresh goat cheese flavored with fennel pollen and black pepper from Pennyroyal Farm. I put a quenelle rustique (a plop) of cheese in the bottom of each bowl and poured the soup around it. Fennel is in the same family as celery, but its florets and pollen produce their own lovely set of volatile scents (Ferioli et al. 2017) that complement the celery without replicating it.

References

Ferioli, F., Giambanelli, E., & D’Antuono, L. F. (2017). Fennel (Foeniculum vulgare Mill. subsp. piperitum) florets, a traditional culinary spice in Italy: evaluation of phenolics and volatiles in local populations, and comparison with the composition of other plant parts. Journal of the Science of Food and Agriculture, 97(15), 5369-5380.

Geffroy, O, Descôtes, J., Serrano, E., Calzi, M.L., Dagan, L., & Schneider, R. (2018). Can a certain concentration of rotundone be undesirable in Duras red wine? A study to estimate a consumer rejection threshold for the pepper aroma compound. Australian Journal of Grape and Wine Research 24: 88-95.

Geffroy, O., Kleiber, D., & Jacques, A. (2020). May peppery wines be the spice of life? A review of research on the ‘pepper’aroma and the sesquiterpenoid rotundone. OENO One, 54(2), 245-262.

Kurobayashi, Y., Katsumi, Y., Fujita, A., Morimitsu, Y., & Kubota, K. (2008). Flavor enhancement of chicken broth from boiled celery constituents. Journal of Agricultural and Food Chemistry, 56(2), 512-516.

McGee, H. (2020). Nose dive: A field guide to the world’s smells. New York, NY: Penguin Press.

An update: Buy me some peanuts!

Lately I’ve been thinking a lot about peanuts, and only partly because of the long delayed return of the baseball season. No, this spring I was trying very hard to channel one of my botanical heroes, George Washington Carver.

Sculpture in the George Washington Carver Garden at the Missouri Botanical Garden. Sculpture by Tina Allen. Photo KPreston

Carver’s best known legacy is his work with peanuts and the 105 peanut recipes he published in a bulletin for the Tuskegee Experiment Station. Inventing over a hundred distinct recipes for one plant is a triumph of creative genius in itself, but he was much more extraordinary than that. He was born enslaved in the early 1860’s and became the first African-American student at Iowa Agricultural College. He broke more ground by joining the faculty there. Later, after being recruited to Tuskegee, he made it his life’s work to elevate lesser-known crop species that could regenerate the land and the lives that had been laid to waste by cotton. One profile of Carver emphasizes his gifts as a science communicator, bringing his discoveries to the people whose livelihoods depended on being able to put them into practice.

I wish I could say that Carver was on my mind this spring because as a teacher I needed to summon his ability to inspire people about plants. The sad truth is that I needed to reflect almost every day upon one of his more famous quotes:

How far you go in life depends on your being tender with the young, compassionate with the aged, sympathetic with the striving, and tolerant of the weak and strong. Because someday in your life you will have been all of these.

My tenderness, compassion, sympathy, and tolerance were definitely put to the test this spring as I taught and held meetings and tried to support my students through a computer camera. To be honest, though, a picture of that quote has been in my office for the last few years because I frequently need that reminder. I guess we all do. To judge by the conflicts Carver is said to have had with Booker T. Washington at Tuskegee, perhaps his sage advice was aimed as much at himself as it was meant for others. Given how far he went in life, though, we should all take his words to heart.

One of the inspiring bright spots on Twitter recently was #BlackBotanistsWeek, organized by a terrific group of scientists, mentors, and leaders. The week-long celebration brought attention to the research of many many Black botanists, most of them early in their careers (this being Twitter, after all). It also honored established scholars as well as African American botanists from the past, including George Washington Carver. A wider audience of people now know him as more than just that peanut guy.

But baseball is another a reason I’ve been thinking of peanuts. Without fans buying peanuts at the stadiums, peanut producers have really been suffering. As I wrote back in 2016, about 6 tons of peanuts are consumed by San Francisco Giants fans per game. Multiply that by 15 matchups across the league for 162 games, and that’s 14,580 tons of peanuts a year. With so many extra peanuts in storage this year, we are going to need every single one of Carver’s 105 recipes, plus some.

Here’s that original post from 2016.

As part of our legume series, the Botanist in the Kitchen goes out to the ballgame where Katherine gives you the play-by-play on peanuts, the world’s most popular underground fruit. She breaks down peanut structure and strategy, tosses in a little history, and gives you a 106th way to eat them. Mmmmm, time to make some boiled peanuts.

Baseball is back, and so are peanuts in the shell, pitchers duels, lazy fly balls, and a meandering but analytical frame of mind. Is this batter going to bunt? Is it going to rain? What makes the guy behind me think he can judge balls and strikes from all the way up here? What does the OPS stat really tell you about a hitter? Is a peanut a nut? How does it get underground? What’s up with the shell?  A warm afternoon at a baseball game is the perfect time to look at some peanuts, and I don’t care if I never get back. Continue reading

The Botanist Stuck in the Kitchen With You (and Peas)

I am about to start an 8th week of online teaching and my county’s 11th week of sheltering in place. While the (essential and life saving) sheltering is getting really old, the academic quarter has sped by as usual, along with its relentless parade of deadlines and grading. Our current crisis may have no definite end, but the academic quarter must wrap up on time, ready or not.

Some people are reporting really vivid dreams right now, however, for me, the most noticeable side effect of working and teaching from home is that I never stop thinking about it. Like midway through a Saturday night screening of Reservoir Dogs when I was suddenly reminded of peas and the upcoming class meeting on fruit. Can I do this online? We’ll just have to see, won’t we?

Oh, and don’t be a Mr. Pink.

Apologies to Stealers Wheel, the terrific Michael Madsen, and his PSA on sheltering.

peeeees.003.jpeg

Closeup of sugar snap pea flower with tiny developing fruit.

The Botanist Stuck in the Kitchen, rummaging for beets

Over these many weeks, humans have been forced into an uncomfortably close study of our own species’ behavior. Observations haltingly stream in through the internet and the TV, through hurried forays into the sparse public square, and through sometimes painful introspection. We are finding what we’ve always known, that humans are petty and petulant, compulsively social, and surprisingly sublime.

Meanwhile, without our clueless interference, non-human animals have gone about their business as normal. The male bi-colored redwing blackbirds where I live are putting on the biggest and flashiest red patches I’ve seen in years. Good luck, guys!

And the Canada geese, which normally annoy me with their poop and their nasty moods have become adorable as they sashay in pairs down the road towards their new nests on the empty golf course. In a few weeks they will be justifiably nasty again, hissing as they protect their babies from me, a silly runner, just trying to shed my own cranky mood into their territory.

Recently, after a run through a muddy patch of the trail stamped with goose footprints and lined with wild sea beets, I remembered that I had some old beets in the refrigerator. Time to do some botany!

For much more information about beets and their relatives, see our longer posts.

Sheltering in the kitchen with oatmeal

My first week of trying to teach remotely has wrapped up, and I finally found a quiet moment to record another video from my kitchen. That moment was 5:45 am.

Most of the US has already spent weeks sheltering at home, and people are getting creative and socially expressive. Thus, apparently, I am already late to the oatmeal video trend. True, oatmeal is exactly the sort of food we need right now. It’s comforting, affordable, nutritious, easy to make, and ripe for virtue signaling. No wonder people want to share. But really, do any of those other videos give you three botany lessons in under 6 minutes? I didn’t think so.

So…am I a morning person? Yes indeed. Have I been rewatching my favorite Tarantino movies? Yes, yes, I have. He has a thing for breakfast cereal. And bathrobes.

Now – if any of you have any more questions, now’s the time. Or you could just check out our more detailed posts about pecans and walnuts.

Botanizing in the kitchen

It’s the spring of 2020, and like millions of others, we Botanists in the Kitchen are sheltering at home, trying to help flatten the curve. But if you are a plant person (or know any) you know that no matter where we are, and how bad the news is, we must have an outlet for botanizing. This blog has always been about helping people connect to plants, especially plants that might just be sitting in their refrigerators or cabinets. These days those connections feel more important than ever.

For the next few months, we are trying something new and inviting you into our kitchens and our nerdy botanical way of looking at the world. We sincerely hope that you can join us in good health and upbeat spirits.

The Botanist Stuck in the Kitchen, Saturday night artichoke edition

Welcome to another installment of our new special feature: a series of videos and posts that bring you into our kitchens as we join millions of people sheltering in place. So far, my local farmers market is open for business and local farmers are continuing to bring fresh food to our community, at some real risk to themselves. So so many of us are grateful.

I was lucky enough last week to pick up some gorgeous giant artichokes to prepare for Saturday night, which presented the opportunity for a virtual botany lab. Wherever you are sheltering, I hope that you are able to find some for yourself. Artichokes are full of antioxidants, specifically polyphenols, that have generally health-promoting effects. They are also rich in dietary fiber, which is a good thing if you have spent too much time on the sofa lately. And if you eat them with melted butter or olive oil, well, that can’t hurt your mood, now can it?

This video was only lightly edited and entirely unscripted, so please be patient with the pace and the occasional interruption by Caltrain.

For more details about artichokes, see my written explanation in an earlier post: How to make an artichoke: the facts about bracts, part 1

 

 

The Botanist Stuck in the Kitchen

It’s the spring of 2020, and like millions of others, we Botanists in the Kitchen are sheltering at home, trying to help flatten the curve. In other words, we are stuck in the kitchen. However, neither of us is complaining right now. Personally, I (Katherine) feel secure in my home, and I am (for now) healthy. I have access to fresh and nutritious food (thank you small-holder farmers), and at the end of the day I can go for a long run along a lovely creek lined with trees and birds. Both are opportunities to connect with plants, and this blog has always been about helping people connect to plants that might just be sitting in their refrigerators.

Like many other educators, I have also been preparing to teach a spring quarter botany course, from my sofa, through a laptop. In rethinking what is essential to the class and what might be necessary for my students in this moment, I decided to assign a new reading. It’s a 2015 study by some Stanford colleagues who found, basically, that a walk through a natural green space reduced anxiety compared to a similar walk through an urban area. Maybe that’s not surprising, but they also investigated potential mechanisms by measuring the way people’s brain activity differed in the two situations. Their data suggest that an immersive experience in “nature” (with plants) reduces the kind of unproductive rumination that feeds anxiety. Nobody has done the same experiment comparing our anxiety levels after scrolling through social media or after carefully preparing broccoli and marveling at the fractal arrangement of its unopened flower buds. I do have a prediction, though. Under the current conditions, maybe it’s time to move into the kitchen and see what’s in the fridge.

 

P.S. If you are food-secure and financially able at this time, please consider giving to your local food bank. Everyone should have nutritious fresh food for body and mind.

Reference

Bratman, G. N., Hamilton, J. P., Hahn, K. S., Daily, G. C., & Gross, J. J. (2015). Nature experience reduces rumination and subgenual prefrontal cortex activation. Proceedings of the national academy of sciences, 112(28), 8567-8572.

Sage, rosemary, and chia: three gifts from the wisest genus (Salvia)

This essay is our annual contribution to the Advent Botany essay collection curated by Alastair Cullham at the University of Reading. We highlight three charismatic species in the large genus Salvia (in the mint family, Lamiaceae): rosemary, sage, and chia.

Two Christmases ago we pointed out the current fad in decorating pineapples for Christmas. This year, some of our gentle readers may come across potted rosemary bushes that are trimmed into a cone to resemble a conifer. These are pleasant and ostensibly can be kept alive after the holiday season.

A rosemary shrub trimmed into a conifer shape. Photo from Pottery Barn.

A perhaps less pleasant holiday botanical encounter may include a Christmas tree-shaped Chia Pet.

Christmas tree Chia Pet. Photo from Amazon.

As far as Chia Pets go, this one is fairly innocuous. In my view, however, its only saving grace is that the chia plant itself is a fabulous taxon (Salvia hispanica), as is the rest of its large genus, Salvia, which also happens to include rosemary (Salvia rosmarinus). Rosemary of course is much more likely to make a holiday appearance as a culinary ingredient than a decoration, lovely as it is. In the kitchen it is frequently joined with its congener Salvia officinalis, usually just called garden sage. That the genus Salvia is responsible for half the taxa in the title of a Simon & Garfunkel album (Parsley, Sage, Rosemary and Thyme), notwithstanding that Art Garfunkel looks like a Chia Pet on the cover, could provide enough taxonomic joy to justify leaving this examination of these plants here. The name “sage”, however, implies wisdom, and so like the wise men of old, I shall persevere.

Parsley, Sage, Rosemary and Thyme album cover by Simon & Garfunkel (1966)

We’ll start by addressing the taxonomic elephant in the room that might otherwise distract learned readers: rosemary was only brought into the Salvia fold in 2017. Before then it was in its own small genus: Rosmarinus. The reason Rosmarinus is now Salvia is that the speciose Salvia was found to be paraphyletic: the pre-2017 conscription of the nearly 1000 species in the genus did not include all of the descendants of their most recent common ancestor. When the relationships between all the Salvia species and their closest relatives were plotted on a single phylogenetic tree, it was obvious that Rosmarinus and a few other genera should more naturally be considered Salvia, and Salvia was revised accordingly.

Rosemary (Salvia rosmarinus)

Another taxonomic bookkeeping item is to clarify that the sages in Salvia are only distant relatives of the sagebrushes and sageworts in the genus Artemisia, which is in the sunflower family Asteraceae (please see our Artemisia essay for more information about that genus, which includes the herb tarragon). The phylogenetic relationships of the major groups in Salvia from the most recent revision (Drew et al., 2017) is shown below.

Figure 2 from Drew et al. (2017): “(A) Composite chronogram of subtribe Salviinae (which contains Salvia and related taxa) based on chloroplast DNA sequences from previous molecular phylogenetic analyses. Asterisks denote nodes with low support and/or conflicting resolution among previous analyses. Salvia nomenclature follows subgeneric clades described here, including three tentatively named clades that await proper circumscription. Calibrations based on Drew & Sytsma (2012; See supplementary figure S4) (B) Circle cladogram framed on larger chronogram with weakly supported nodes collapsed, depicting species diversity and generalized staminal types within each clade of Salvia; modified after Walker & Sytsma (2007) and Walker et al. (2015).” S. elegans (pineapple sage), S. sclarea (clary sage), and S. hispanica (chia) are in the American subgenus Calosphace. Rosemary is in its own subgenus, Rosmarinus.

The phylogenetic diagram above (from Drew et al., 2017) shows locations where the flower anther structure evolved into a lever-like mechanism that aids in bee pollination by physically moving the two stamens into contact with the bee’s back when a bee enters the flower (see illustration below from Walker, Sytsma, Treutlein, & Wink, 2004).

Figure 2 from Walker et al 2004: “Flower and pollination of Salvia pratensis (Salvia clade I). A flower without the lever mechanism activated (A). As the pollinator enters the flower (B), the pollen is deposited on the back of the pollinator. As the pollinator enters an older flower (stamens removed from sketch, but remain present in flower) pollen is transferred (C). The posterior anther thecae forming the lever can be fused or free and in the subg. Leonia, produce fertile pollen”

The lever mechanism independently evolved three times within Salvia. Each of these evolutionary events was followed by rapid and prolific speciation driven by this innovation in pollination biology (Drew et al., 2017): the advent of the lever mechanism led to the radiation of around 500 species in the subgenus Calosphace in Central and South America; around 250 species evolved soon after the advent of the lever mechanism in the Salvia officinalis clade in the Mediterranean and Western Asia; and around 100 species radiated following the lever in Far East Asia in the Salvia glutinosa clade.

Sage (Salvia officinalis) flowering on my deck this summer

The bee-pollinated Salvia flowers are distinct from those pollinated by hummingbirds, which are more elongate and often red, like the flowers of pineapple sage (S. elegans), and have either evolutionarily lost the staminal lever mechanism or never had it in the first place.

Pineapple sage (Salvia elegans)

The parsley, sage, rosemary, and thyme made famous by Simon & Garfunkel started their culinary careers in Europe. All but parsley are in the mint family (Lamiaceae; see our carrot top essay for a discussion of fun chemical relationships between the flavor compounds in the mint family and the parsley family, Apiaceae). This points to the profusion of aromatic mint family species common to the rocky shrublands covering much of Europe and western Asia (Rundel et al., 2016; Vargas, Fernández-Mazuecos, & Heleno, 2018).

Called “tomillar” in spanish, literally a field of wild thyme (Thymus vulgaris) and associated species growing in the Orusco de Tajuña hills (near Madrid. Spain). Other edible Lamiaceae can be found in this plant community, including Salvia rosmarinus, and Lavandula latifolia (a lavendar). Photo by Julia Chacón-Labella.

That broad area is one of the centers of Salvia species diversity, but the genus is globally widespread. The genus probably originated and dispersed first from African and then the Mediterranean (see the figure of Salvia distribution and putative dispersal history below from Will & Claßen-Bockhoff, 2017), but the full story of dispersal and species radiation within the genus requires more elucidation.  Numerous species of Salvia are utilized as culinary or medicinal herbs or garden ornamentals throughout its range.

Fig. 8 from Will et al. 2017: “Salvia s.l. in time and space. A: Distribution of Salvia s.l., putative migration routes and fossil sites; BLB = Bering Land Bridge; D = Dorystaechas; M= Meriandra; NALB = North Atlantic Land Bridge; P = Perovskia; R = Rosmarinus; Z = Zhumeria; white arrows indicate repeated colonization of S Africa and dispersal from the Eastern Cape to Madagascar; hatched arrows (dark grey) indicate the repeated colonization of the Canary Islands from two different mainland sources; red arrow illustrate the dispersal from East Asia to Eurasia reflected by S. glutinosa; black arrows correspond to dispersal events from the OW to America reflected by two distinct lineages; ? = route uncertain; template of the map provided by the German earth science portal (www.mygeo.info). B: Simplified phylogenetic tree; nodes discussed in the text are indicated by capital letters; colors reflect distribution areas. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)”

The phylogeny above shows the large number of American taxa in subgenera Calosphace and Audibertia. While many of these species have also been used as aromatic herbs and traditional medicines, the most famous of the American Salvias, chia, is known for its nutritious seeds (Jenks & Kim, 2013a). Chia is a name given to two species of Salvia: S. columbariae and S. hispanica. S. columbariae ranges from southern California to central Mexico, at which point the range of S. hispanica begins and extends to Guatemala. Indigenous groups throughout that range historically used both species of chia as a pre-Columbian staple food source. The Aztecs cultivated it, and 16th century Spanish codices indicate it may have been as widely utilized as maize (Cahill, 2003).

Chia nutlets (S. hispanica) and a dried sage (S. officinalis) leaf for scale

Technically, the chia “seeds” you can buy in the store (or harvest yourself) are fruits. The Salvia fruit, like those of all mint family species, is called a schizocarp. The ovary inside the flower has four chambers, called locules. Each locule matures into an independent, indehiscent nutlet. The shell (pericarp) of the nutlet is stratified into the same categories of outer fruit layers as are more familiar fleshy fruits (cuticle, epicarp, mesocarp, endocarp; see our pomegranate or apple essay for more details about fruit structure), but in the Salvia nutlet the outer fruit layers are dry and compressed and inseparable from the single seed inside the fruit (Capitani, Ixtaina, Nolasco, & Tomás, 2013). Salvia nutlets mature inside of papery fused calyces (see the photo below of sage nutlets and their cup-like persistent calyces).

Sage (Salvia officinalis) leaves and nutlets inside of papery, fused persistent calyces.

The word “chia” is derived from the Aztec language Nahuatl word for “oily,” a name bestowed because chia seeds do have a high oil content (Cahill, 2003). Chia oil is rich in the omega-3 fatty acid alpha-linolenic acid, which has contributed to its recent fame as a modern health food. High alpha-linolenic acid content may be a general feature of the genus: other Salvia species, including S. officinalis, garden sage, have been shown to have high alpha-linolenic acid content in their seeds (Ben Farhat, Chaouch -Hamada, & Landoulsi, 2015).

Chia nutlets are also known for the gooey mucilage they exude when wet. This polysaccharide matrix is used as a food binder and thickener (Google “vegan egg replacement”). The production of mucilaginous diaspores (the dispersing agent, a fruit or a seed) is called myxocarpy. As Katherine discusses in her essay on okra, the flagship mucilaginous food plant, the purpose of the mucilage is likely water retention in the arid regions where these plants tend to come from. The mucilage might also act as a glue to bind the nutlet to the soil or to a dispersing animal’s fur—or to the terracotta substrate of a Chia Pet. Myxocarpy is most common in plants with small seeds growing in dry, arid areas, like those where Salvia species have radiated (Ryding, 1992).

Sage growing in coastal California, a Mediterranean-type ecosystem

Within the mint family, myxocarpy only occurs in the subfamily Nepetoideae. The subfamily, incidentally, gets its name from the catnip genus, Nepeta. Most if not all of the familiar edible herbs from the mint family are in this subfamily. Katherine has taken advantage of myxocarpy in this clade by serving soaked black basil (Ocimum basilicum) nutlets as a basil-scented vegan “caviar.”

Cat in the catnip (Nepeta cataria)

Salvia aroma and flavor–and I think the psychoactive properties of catnip for cats and known hallucinogen Salvia divinorum–comes from the terpenoids and phenolics that comprise their essential oils. The terpenoids are synthesized and stored in special glandular trichomes on the leaf surface (Schuurink & Tissier, 2019). Trichomes are hair-like extensions of the epidermis, although the glandular trichomes full of essential oil look more like water balloons than hair. Salvia species have other types of trichomes in addition to the glandular trichomes that are indeed much more hair-like and give the leaves of some Salvia a downy or prickly appearance (Kamatou et al., 2006).

Scanning electron micrograph (SEM) of a rosemary leaf. Spherical oil-filled glandular trichomes are found amongst the branched hair-like trichomes covering the lower surface of the leaf, which has a greater profusion of hairs and glands than the upper surface. When the glands are damaged or broken the aromatic essential oil is released. Magnification: x1550 (x381 at 10cm wide). Photo from https://psmicrographs.com/sems/flowers-plants/

We discussed trichome function extensively in one of our kiwi essays. The hair-like trichomes may serve the leaf by protecting it from excess solar radiation and wind and otherwise creating a more mild microclimate at the leaf surface to help it retain water.

Rosemary

Terpenoid biosynthesis requires numerous steps in which intermediate chemical products are modified by a series of specific enzymes and other proteins. Small changes in the genes responsible for those proteins can lead to big qualitative changes in the final terpenoid mix in the essential oil of a given taxon. We mammals are adept at discerning aroma differences between chemically similar terpenoids. For example, in on our carrot top essay we discussed the case of spearmint and caraway. The respective versions of the terpenoid carvone that characterize the essential oils of those plants differ only in the physical configuration of the same chemical elements, but they smell radically differently to us.

Clary sage (S. sclarea)

The function of the essential oil in the glandular trichomes, however, is not to improve human well being. Plants synthesize those lovely terpenoids as chemical defense against insect herbivores and microbial pathogens.  When the hair-like trichomes fail to stop the intruders, the glandular trichomes will explode on contact, drenching the would-be attackers in a caustic-but-fragrant deluge.

rosemary

The pharmacopeia of terpenoid aromas present in the mint family—bring to mind the scents of sages, rosemary, lavender, peppermint, spearmint, savory, thyme, oregano, marjoram, shiso, basil—owes its evolutionary origins certainly in part at least to the various selection pressures imposed on those herbal taxa by their pests. Within even commonly grown domesticated Salvia species, essential oil constituent variation leads to dramatic differences in aroma. For example, consider the differences among rosemary, garden sage, clary sage (S. sclarea), and pineapple sage (Salvia elegans), which has a notably fruity smell. The fruitiness is due in part to the presence of the terpenoids charcteristic of citrus, which are widespread across plants.

Garden sage (Salvia officinalis)

The Roman historian and natural scientist Pliny the Elder coined the name Salvia, which is derived from the Latin salvare, meaning to heal and save, and salvus, meaning uninjured or whole. The common English name “sage” of these plants ultimately comes from this same Latin root. In Pliny the Elder’s time, the Mediterranean Salvia species were considered healing herbs, good for treating colds and a variety of ailments. Salvia feature prominently in the ethnomedicine of every region in which it is found (South Africa: (Kamatou et al., 2006); Central and South America: (Jenks & Kim, 2013b)). There is a Chinese proverb that asks “How can a man grow old who has sage in his garden?” I do not know which Salvia species would have been responsible for this proverb. There are over a hundred species of Salvia species native to China, and the Mediterranean import Salvia officinalis is grown throughout the country.

Bundle of dried sage, recently, recently, in Alaska

The health and wellness meaning of “sage” is etymologically independent from its other definition as a wise thing or wise person. This second meaning ultimately comes from the Latin sapere, to know or taste. I personally enjoy conflating these meanings, tying wisdom and well-being to the plant. I like that the Salvia officinalis that grew on a pot on my deck this summer and that will season comfort food this winter is a descendent from the plants that healer contemporaries of Pliny the Elder would have searched for amidst sun-drenched rocks in the Mediterranean hills.

Salvia in macarons at my local bakery (Fire Island) this week: blackberry-sage and rosemary-merlot.

Simon & Garfunkel close the Parsley, Sage, Rosemary and Thyme album with the song “7 O’Clock News/Silent Night,” in which they juxtapose jarring newscasts from the Nixon and Johnson era with the Christmas carol. This holiday season has felt a bit like that song to me, like concerted effort is required to prevent awful, omnipresent news from drowning out the joy and solemnity of marking the darkest time of the year. But perhaps honoring traditions always involves this element of deliberately carving out the space in which to do so. Perhaps sprinkling rosemary and sage into a holiday stew or stuffing can be a radical act, a defiant embrace of old wisdom to fortify ourselves to stand with each other and create something beautiful in the cold. Regardless, insane amounts of butter will be involved, at least at my house. And when the January 2nd resolutions to “eat better” come around, chia will be there.

References

Ben Farhat, M., Chaouch -Hamada, R., & Landoulsi, A. (2015). Oil yield and fatty acid profile of seeds of three Salvia species. A comparative study. Herba Polonica, 61(2), 14–29. doi:10.1515/hepo-2015-0012

Cahill, J. P. (2003). Ethnobotany of Chia, Salvia hispanica L. (Lamiaceae). Economic Botany, 57(4), 604–618. doi:10.1663/0013-0001(2003)057[0604:EOCSHL]2.0.CO;2

Capitani, M. I., Ixtaina, V. Y., Nolasco, S. M., & Tomás, M. C. (2013). Microstructure, chemical composition and mucilage exudation of chia ( Salvia hispanica L.) nutlets from Argentina. Journal of the Science of Food and Agriculture, 93(15), 3856–3862. doi:10.1002/jsfa.6327

Drew, B. T., González-Gallegos, J. G., Xiang, C. L., Kriebel, R., Drummond, C. P., Walker, J. B., & Sytsma, K. J. (2017). Salvia united: The greatest good for the greatest number. Taxon, 66(1), 133–145. doi:10.12705/661.7

Jenks, A. A., & Kim, S. C. (2013a). Medicinal plant complexes of Salvia subgenus Calosphace: An ethnobotanical study of new world sages. Journal of Ethnopharmacology, 146(1), 214–224. doi:10.1016/j.jep.2012.12.035

Jenks, A. A., & Kim, S. C. (2013b). Medicinal plant complexes of Salvia subgenus Calosphace: An ethnobotanical study of new world sages. Journal of Ethnopharmacology, 146(1), 214–224. doi:10.1016/j.jep.2012.12.035

Kamatou, G. P., van Zyl, R. L., van Vuuren, S. F., Viljoen, A., Figueiredo, A. C., Barroso, J. G., … Tilney, P. M. (2006). Chemical composition, leaf trichome types and biological activities of the essential oils of four related Salvia Species indigenous to Southern Africa Analysis of plant volatile using 2D gas chromatography View project Chemometrics View project. Journal of Essential Oil Research. Retrieved from https://www.researchgate.net/publication/236850867

Rundel, P. W., Arroyo, M. T. K., Cowling, R. M., Keeley, J. E., Lamont, B. B., & Vargas, P. (2016). Mediterranean Biomes: Evolution of Their Vegetation, Floras, and Climate. Annual Review of Ecology, Evolution, and Systematics, 47, 383–407. doi:10.1146/annurev-ecolsys-121415-032330

Ryding, O. (1992). Pericarp structure and phylogeny within Lamiaceae subfamily Nepetoideae tribe Ocimeae. Nordic Journal of Botany, 12(3), 273–298. doi:10.1111/j.1756-1051.1992.tb01304.x

Schuurink, R., & Tissier, A. (2019). Glandular trichomes: micro-organs with model status? The New Phytologist, nph.16283. doi:10.1111/nph.16283

Vargas, P., Fernández-Mazuecos, M., & Heleno, R. (2018). Phylogenetic evidence for a Miocene origin of Mediterranean lineages: species diversity, reproductive traits and geographical isolation. Plant Biology, 20, 157–165. doi:10.1111/plb.12626

Walker, J. B., Sytsma, K. J., Treutlein, J., & Wink, M. (2004). Salvia (Lamiaceae) is not monophyletic: implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. American Journal of Botany, 91(7), 1115–1125. doi:10.3732/ajb.91.7.1115

Will, M., & Claßen-Bockhoff, R. (2017). Time to split Salvia s.l. (Lamiaceae) – New insights from Old World Salvia phylogeny. Molecular Phylogenetics and Evolution, 109, 33–58. doi:10.1016/j.ympev.2016.12.041