Category Archives: Vegetables

#Celery

It’s hard to get too excited about eating celery, but if you can manage to see a dip-drenched celery stick as a dynamically loaded cantilevered beam, then its stringy bits suddenly start to look like incredible feats of bioengineering. The mildest mannered member of the crudité platter turns out to be a misunderstood superhero.

If you are about to celebrate Thanksgiving, chances are good that you have a lot of celery in your immediate future. It shows up in dressing and cranberry relish and especially in leftovers, like turkey salad sandwiches. When I was growing up, my sister and I were tasked with picking the carcass for turkey hash, which, in our family, was basically turkey soup stretched with lots of celery and potatoes and never enough salt. Although frugal and nutritious, this one-pot crusade against food waste did not inspire a lifelong love of cooked celery. But you don’t have to like celery the food to admire its alter ego, celery the plant.

Leaves, not stems

Celery the food may not excite you, but celery the plant – the bundle of dynamically loaded cantilevered beams – is a biomechanical superhero worth exploring in the kitchen. Celery (Apium graveolens) is one of the clearest examples of how a plant’s life in the wild over tens of millions of years yielded anatomical adaptations that determine how we use it now. Because of its evolutionary responses to biomechanical challenges, it is now perfectly built to hold peanut butter or scoop dip, and when sliced, its crescent moon shapes are pretty in soup and chopped salads. On the other hand, its tough strings catch between teeth and are not easy to digest.

Celery stalks are the petioles (“stalks”) of compound leaves. They are not stems, in spite of widespread misrepresentation in elementary school lesson plans. They may look like stems to some people because they are thick and fleshy and have prominent veins running lengthwise through them. But there are several morphological clues to their leafy identity, including these: Continue reading

Botany Lab of the Month: Jack-O-Lantern

Happy National Pumpkin Day! Turn carving your Halloween Jack-O-Lantern into a plant dissection exercise.

IMG_7963

The first Jack-O-Lanterns were carved out of turnips in 17th-century Ireland. While the large, starchy hypocotyls (fused stem and taproot) of cruciferous vegetables are anatomically fascinating, this post will be about the stuff you are more likely cutting through to make a modern Jack-O-Lantern out of squash. Continue reading

Carrot top pesto through the looking glass

Isomers are molecules that have the same chemical constituents in different physical arrangements. Some terpenoid isomers have very different aromas and are important food seasonings. A batch of carrot top pesto led to an exploration of intriguing terpenoid isomers in the mint, carrot, and lemon families.

“Oh, c’mon. Try it,” my husband admonished me with a smile. “If anyone would be excited about doing something with them, I should think it would be you.”

The “them” in question were carrot tops, the prolific pile of lacy greens still attached to the carrots we bought at the farmer’s market. I have known for years that carrot tops are edible and have occasionally investigated recipes for them, but that was the extent of my efforts to turn them into food. My excuse is that I harbored niggling doubts that carrot tops would taste good. Edible does not, after all, imply delicious. My husband had thrown down the gauntlet, though, by challenging my integrity as a vegetable enthusiast. I took a long look at the beautiful foliage on the counter.

“Fine,” I responded, sounding, I am sure, resigned. “I’ll make a pesto with them.”

Carrot tops, it turns out, make a superb pesto. I have the passion of a convert about it, and not just because my carrot tops will forevermore meet a fate suitable to their bountiful vitality. The pesto I made combined botanical ingredients from two plant families whose flavors highlight the fascinating chemistry of structural and stereo isomers. Continue reading

Maca: A Valentine’s Day Call for Comparative Biology

Sometimes food is medicine, and sometimes that medicine is an aphrodisiac. Such is the case with Andean staple maca. What elevates this high-altitude root vegetable above its cruciferous brethren?

The ancient Greek Hippocrates, the father of modern medicine, famously said: “Let food be your medicine.” For most of human history, categorizing an edible item as either food or medicine could prove difficult or impossible (Totelin 2015). Even in the current era of modern pharmaceuticals, food and medicine exist along a continuum (Johns 1996; Etkin 2006; Valussi & Scirè 2012; Leonti 2012; Totelin 2015). The traditional Andean food Maca (Lepidium meyenii; family Brassicaceae) can be placed squarely in the middle of that continuum. Herbal medicine markets outside of its native Peru have recently discovered maca and loudly and lucratively promote an aspect of maca’s medicinal reputation that has particular relevance on Valentine’s Day: an aphrodisiac that increases stamina and fertility (Balick & Lee 2002; Wang et al. 2007). Continue reading

Who wants some green bean casserole?

Is there anything good about green bean casserole? Not much beyond its association with Thanksgiving, so Katherine will be brief and just keep you company in the kitchen in case you are stuck assembling said casserole.

Since this year is the International Year of Pulses, we have been focusing on legumes, whether they count as pulses or not. Green beans do not count as pulses, but only because they are eaten as tender and fresh immature whole fruits. The very same species (Phaseolus vulgaris), when allowed to mature, could yield black beans, white beans, kidney beans, or pinto beans depending on their variety – dry seeds that are perfectly good examples of pulses.

This Thanksgiving week we are going to welcome green beans into the fold and give them a special place. It’s too bad that Thanksgiving so often presents them out of the can, overcooked, with funky flavors, and buried in a casserole. Even Wikipedia promotes this peculiar tradition : “A dish with green beans popular throughout the United States, particularly at Thanksgiving, is green bean casserole, which consists of green beans, cream of mushroom soup, and French fried onions.”

And once again, international observers ask themselves what on earth are Americans thinking? That cannot be good for them. But in the American spirit of inclusivity we invite green beans of all sorts to our tables and try to learn something from them. So if you are preparing green beans this week, take heart, take up your knives, and take a closer look.

The outside of the bean Continue reading

Botany Lab of the Month (Oscars edition): potatoes

This month we introduce a new feature to the Botanist in the Kitchen: Botany Lab of the Month, where you can explore plant structures while you cook. In our inaugural edition, Katherine explains why she would like to add her nominee, Solanum tuberosum, to the list of white guys vying for Best Supporting Actor.

In one of this year’s biggest and best movies, Matt Damon was saved by a potato, and suddenly botanists everywhere had their very own action hero. It’s not like we nearly broke Twitter, but when the trailer came out, with Damon proclaiming his fearsome botany powers, my feed exploded with photos of all kinds of people from all over the world tagged #Iamabotanist. The hashtag had emerged a year earlier as a call to arms for a scrappy band of plant scientists on a mission to reclaim the name Botanist and defend dwindling patches of territory still held within university curricula. Dr. Chris Martine of Bucknell University, a plant science education hero himself, inspired the movement, and it was growing pretty steadily on its own. Then came the trailer for The Martian, with Matt Damon as Mark Watney, botanizing the shit out of impossible circumstances and lending some impressive muscle to the cause. The botanical community erupted with joyous optimism, and the hashtag campaign was unstoppable. Could The Martian make plants seem cool to a broader public? Early anecdotes suggest it’s possible, and Dr. Martine is naming a newly described plant species (a close potato relative) for Astronaut Mark Watney.

In the film, that potato – or actually box of potatoes – was among the rations sent by NASA to comfort the crew on Thanksgiving during a very long mission to Mars. After an accident, when the rest of the crew leaves him for dead, Watney has to generate calories as fast as he can. It’s a beautiful moment in the movie when he finds the potatoes. In a strange and scary world, Mark has found a box of old friends. They are the only living creatures on the planet besides Mark (and his own microbes), and they are fitting companions: earthy, comforting, resourceful, and perpetually underestimated. At this point in the movie, though, the feature he values most is their eyes. Continue reading

Okra – what’s not to like?

What is hairy, green, full of slime, and delicious covered in chocolate? It has to be okra, bhindi, gumbo, Abelmoschus esculentus, the edible parent of musk. Katherine explores okra structure, its kinship with chocolate, and especially its slippery nature. What’s not to like?

Okra flower with red fruit below

Okra flower with red fruit below

People often ask me about okra slime. Rarely do they ask for a good chocolate and okra recipe, which I will share unbidden. With or without the chocolate, though, okra is a tasty vegetable. The fruits can be fried, pickled, roasted, sautéed, and stewed. Young leaves are also edible, although I have never tried them and have no recipes. Okra fruits are low in calories and glycemic index and high in vitamin C, fiber, and minerals. The plant grows vigorously and quickly in hot climates, producing large and lovely cream colored flowers with red centers and imbricate petals. The bright green or rich burgundy young fruits are covered in soft hairs. When they are sliced raw, they look like intricate lace doilies. In stews, the slices look coarser, like wagon wheels. And yes, okra is slimy. And it is in the mallow family (Malvaceae), along with cotton, hibiscus, durian fruit, and chocolate. Continue reading

Making ratatouille like a botanist

The story of the nightshades is usually told as a tale of European explorers, New World agriculturalists, and a wary bunch of Old World eaters.  But what about the birds?  And the goji berries?  Jeanne and Katherine introduce you to the Solanaceae family and walk you through the botany to be observed while making ratatouille, the classic French collision of Eastern and Western nightshades.

Can you imagine Italian cuisine without tomatoes? The Irish without potatoes? Chinese cuisine without spicy, fruity chiles?  Such was the case prior to the discovery of the New World nightshades (family Solanaceae) by sixteenth-century Spanish explorers.  And they couldn’t help but run into them.  Solanaceae is a huge family, with over 100 genera and nearly 2500 species, most of which are in Central and South America. Continue reading

Super styled

Corn silks are annoying, but they’re also amazing. The longest styles on the planet don’t make it easy for corn pollen to do its job.  Gain new respect for your corn on the cob. 

Corn plant. Tassels with male flowers on top, ears with exposed silks in the middle

Corn plant. Tassels with male flowers on top, ears with exposed silks in the middle

Fresh corn (Zea mays, Poeaceae) is a summertime treat. Shucking corn silks, though, can be a pain.  Corn silks, however, are amazing, and maybe knowing why will ameliorate their annoyingness.  Formally corn silks are the style, the part of the female flower that intercepts pollen.  Female flowers of many species have a stigma, a sticky pad, atop their styles to intercept pollen, but corn silks are lined with sticky trichomes (like hairs) that essentially do the same thing.  Corn silks are incredibly long styles.  Can you think of another plant with a flower appendage that could rival it?  I can’t.  Continue reading

Caterpillars on my crucifers: friends or foes?

A high glucosinolate (putatively anti-cancer) broccoli variety is now on the market.  Jeanne wonders if caterpillar herbivory-induced increases in glucosinolates can match it.  The answer is unsatisfyingly complicated. 

Cabbage butterfly pupa on the tile above my sink. A survivor from washing crucifers from the garden.

Cabbage butterfly pupa on the tile above my sink. A survivor from washing crucifers from the garden.

There are three primary reasons why I haven’t launched aggressive war on the cabbage butterfly (Pieris rapae) caterpillars munching on the cruciferous veggies in my garden, even though I don’t like them:  (1) garden neglect; (2) hostility towards most pesticides; and (3) bonhomie toward caterpillars by my toddler.  There is also a fourth reason.  I know that in general most plants increase production of chemical defense compounds when they detect that they’re being attacked by pathogens or herbivores (Textor and Gershenzon 2009).  Some of these defense compounds have been shown to be beneficial for human health, including those in crucifers.  I’ve been wondering for a while if those caterpillars were actually enhancing the value of the tissue they didn’t consume.  A recent report about a high-defense-compound laden variety of broccoli prompted me to do some research into the issue.  I’m left with more questions than answers. Continue reading